Effective field theory and projective construction for Zk parafermion fractional quantum Hall states

被引:41
作者
Barkeshli, Maissam [1 ]
Wen, Xiao-Gang [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 15期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.81.155302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The projective construction is a powerful approach to deriving the bulk and edge field theories of non-Abelian fractional quantum Hall (FQH) states and yields an understanding of non-Abelian FQH states in terms of the simpler integer quantum Hall states. Here we show how to apply the projective construction to the Z(k) parafermion (Laughlin/Moore-Read/Read-Rezayi) FQH states, which occur at filling fraction nu=k/(kM+2). This allows us to derive the bulk low-energy effective field theory for these topological phases, which is found to be a Chern-Simons theory at level 1 with a U(M) x Sp(2k) gauge field. This approach also helps us understand the non-Abelian quasiholes in terms of holes of the integer quantum Hall states.
引用
收藏
页数:7
相关论文
共 20 条
[1]   Structure of quasiparticles and their fusion algebra in fractional quantum Hall states [J].
Barkeshli, Maissam ;
Wen, Xiao-Gang .
PHYSICAL REVIEW B, 2009, 79 (19)
[2]  
Cabra DC, 2000, INT J MOD PHYS A, V15, P4857, DOI 10.1142/S0217751X00002354
[3]   Parafermion Hall states from coset projections of abelian conformal theories [J].
Cappelli, A ;
Georgiev, LS ;
Todorov, IT .
NUCLEAR PHYSICS B, 2001, 599 (03) :499-530
[4]   SU(N) AND SP(2N) WZW FUSION RULES [J].
CUMMINS, CJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (02) :391-400
[5]   A Chern-Simons effective field theory for the Pfaffian quantum Hall state [J].
Fradkin, E ;
Nayak, C ;
Tsvelik, A ;
Wilczek, F .
NUCLEAR PHYSICS B, 1998, 516 (03) :704-718
[6]  
Francesco P. D., 1997, CONFORMAL FIELD
[7]   MODULAR INVARIANT PARTITION-FUNCTIONS FOR PARAFERMIONIC FIELD-THEORIES [J].
GEPNER, D ;
QIU, ZG .
NUCLEAR PHYSICS B, 1987, 285 (03) :423-453
[8]   PAIRED HALL STATE AT HALF FILLING [J].
GREITER, M ;
WEN, XG ;
WILCZEK, F .
PHYSICAL REVIEW LETTERS, 1991, 66 (24) :3205-3208
[9]   Conformal Field Theory Approach to Abelian and Non-Abelian Quantum Hall Quasielectrons [J].
Hansson, T. H. ;
Hermanns, M. ;
Regnault, N. ;
Viefers, S. .
PHYSICAL REVIEW LETTERS, 2009, 102 (16)
[10]   Edge excitations of paired fractional quantum Hall states [J].
Milovanovic, M ;
Read, N .
PHYSICAL REVIEW B, 1996, 53 (20) :13559-13582