Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California

被引:164
作者
Gonzalez, Patrick [1 ]
Asner, Gregory P. [2 ]
Battles, John J. [1 ,3 ]
Lefsky, Michael A. [4 ]
Waring, Kristen M. [1 ]
Palace, Michael [5 ,6 ]
机构
[1] Univ Calif Berkeley, Ctr Forestry, Berkeley, CA 94720 USA
[2] Carnegie Inst, Dept Global Ecol, Stanford, CA 94305 USA
[3] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
[4] Colorado State Univ, Dept Forest Rangeland & Watershed Stewardship, Ft Collins, CO 80523 USA
[5] Univ New Hampshire, Complex Syst Res Ctr, Durham, NH 03824 USA
[6] Univ Oxford, Environm Change Inst, Oxford OX1 3QY, England
关键词
Coast redwood; Forest carbon; Greenhouse gas inventories; Lidar; Monte Carlo analysis; QuickBird; Sierra Nevada; IKONOS SATELLITE-OBSERVATIONS; LASER SCANNER DATA; AIRBORNE LASER; ABOVEGROUND BIOMASS; CANOPY STRUCTURE; AMAZON FOREST; RAIN-FORESTS; TREE HEIGHT; ETM PLUS; INVENTORY;
D O I
10.1016/j.rse.2010.02.011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Greenhouse gas inventories and emissions reduction programs require robust methods to quantify carbon sequestration in forests. We compare forest carbon estimates from Light Detection and Ranging (Lidar) data and QuickBird high-resolution satellite images, calibrated and validated by field measurements of individual trees. We conducted the tests at two sites in California: (1) 59 km(2) of secondary and old-growth coast redwood (Sequoia sempervirens) forest (Garcia-Mailliard area) and (2) 58 km(2) of old-growth Sierra Nevada forest (North Yuba area). Regression of aboveground live tree carbon density, calculated from field measurements, against Lidar height metrics and against QuickBird-derived tree crown diameter generated equations of carbon density as a function of the remote sensing parameters. Employing Monte Carlo methods, we quantified uncertainties of forest carbon estimates from uncertainties in field measurements, remote sensing accuracy, biomass regression equations, and spatial autocorrelation. Validation of QuickBird crown diameters against field measurements of the same trees showed significant correlation (r=0.82, P<0.05). Comparison of stand-level Lidar height metrics with field-derived Lorey's mean height showed significant correlation (Garcia-Mailliard r=0.94, P<0.0001: North Yuba R=0.89, P<0.0001). Field measurements of five aboveground carbon pools (live trees, dead trees, shrubs, coarse woody debris, and litter) yielded aboveground carbon densities (mean +/- standard error without Monte Carlo) as high as 320 +/- 35 Mg ha(-1) (old-growth coast redwood) and 510 +/- 120 Mg ha(-1) (red fir [Abies magnifica] forest), as great or greater than tropical rainforest. Lidar and QuickBird detected aboveground carbon in live trees, 70-97% of the total. Large sample sizes in the Monte Carlo analyses of remote sensing data generated low estimates of uncertainty. Lidar showed lower uncertainty and higher accuracy than QuickBird, due to high correlation of biomass to height and undercounting of trees by the crown detection algorithm. Lidar achieved uncertainties of <1%, providing estimates of aboveground live tree carbon density (mean +/- 95% confidence interval with Monte Carlo) of 82 +/- 0.7 Mg ha(-1) in Garda-Mailliard and 140 +/- 0.9 Mg ha(-1) in North Yuba. The method that we tested, combining field measurements, Lidar, and Monte Carlo, can produce robust wall-to-wall spatial data on forest carbon. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1561 / 1575
页数:15
相关论文
共 84 条
  • [11] Increasing biomass in Amazonian forest plots
    Baker, TR
    Phillips, OL
    Malhi, Y
    Almeida, S
    Arroyo, L
    Di Fiore, A
    Erwin, T
    Higuchi, N
    Killeen, TJ
    Laurance, SG
    Laurance, WF
    Lewis, SL
    Monteagudo, A
    Neill, DA
    Vargas, PN
    Pitman, NCA
    Silva, JNM
    Martínez, RV
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2004, 359 (1443) : 353 - 365
  • [12] Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dual-wavelength SAR interferometry
    Balzter, H.
    Rowland, C. S.
    Saich, P.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2007, 108 (03) : 224 - 239
  • [13] Quantifying uncertainty in estimates of C emissions from above-ground biomass due to historic land-use change to cropping in Australia
    Barrett, DJ
    Galbally, IE
    Graetz, RD
    [J]. GLOBAL CHANGE BIOLOGY, 2001, 7 (08) : 883 - 902
  • [14] GLC2000:: a new approach to global land cover mapping from Earth observation data
    Bartholomé, E
    Belward, AS
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (09) : 1959 - 1977
  • [15] BICKEL K, 2006, NATL GREENHOUSE GAS, V4
  • [16] Mapping US forest biomass using nationwide forest inventory data and moderate resolution information
    Blackard, J. A.
    Finco, M. V.
    Helmer, E. H.
    Holden, G. R.
    Hoppus, M. L.
    Jacobs, D. M.
    Lister, A. J.
    Moisen, G. G.
    Nelson, M. D.
    Riemann, R.
    Ruefenacht, B.
    Salajanu, D.
    Weyermann, D. L.
    Winterberger, K. C.
    Brandeis, T. J.
    Czaplewski, R. L.
    McRoberts, R. E.
    Patterson, P. L.
    Tymcio, R. P.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) : 1658 - 1677
  • [17] Regional aboveground forest biomass using airborne and spaceborne LiDAR in Quebec
    Boudreau, Jonathan
    Nelson, Ross F.
    Margolis, Hank A.
    Beaudoin, Andre
    Guindon, Luc
    Kimes, Daniel S.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (10) : 3876 - 3890
  • [18] Spatial partitioning of biomass and diversity in a lowland Bolivian forest:: Linking field and remote sensing measurements
    Broadbent, Eben N.
    Asner, Gregory P.
    Pena-Claros, Marielos
    Palace, Michael
    Soriano, Marlene
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2008, 255 (07) : 2602 - 2616
  • [19] Brown J.K., 1974, Handbook for inventorying down woody material
  • [20] Burnham K.P., 1998, Model selection and interference: a practical information-theoretic approach