The second Hankel determinant for starlike and convex functions of order alpha

被引:15
作者
Sim, Young Jae [1 ]
Thomas, Derek K. [2 ]
Zaprawa, Pawel [3 ]
机构
[1] Kyungsung Univ, Dept Math, Busan, South Korea
[2] Swansea Univ, Dept Math, Swansea, W Glam, Wales
[3] Lublin Univ Technol, Dept Math, Fac Mech Engn, Lublin, Poland
基金
新加坡国家研究基金会;
关键词
Starlike functions; convex functions; coefficient problems; Hankel determinant; COEFFICIENTS; INVERSE; BOUNDS;
D O I
10.1080/17476933.2021.1931149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In recent years, the study of Hankel determinants for various subclasses of normalised univalent functions f is an element of S given by f(z) = z + Sigma(infinity)(n=2) a(n)z(n) for D = {z is an element of C : vertical bar z vertical bar < 1} has produced many interesting results. The main focus of interest has been estimating the second Hankel determinant of the form H-2,H-2 (f) = a(2)a(4) - a(3)(2). A non-sharp bound for H-2,H-2 (f ) when f is an element of K(alpha), alpha is an element of [0, 1) consisting of convex functions of order alpha was found by Krishna and Ramreddy (Hankel determinant for starlike and convex functions of order alpha. Tbil Math J. 2012;5:65-76), and later improved by Thomas et al. (Univalent functions: a primer. Berlin: De Gruyter; 2018). In this paper, we give the sharp result. Moreover, we obtain sharp results for H-2,H-2 (f(-1)) for the inverse functions f(-1) when f is an element of K(alpha), and when f is an element of S* (alpha), the class of starlike functions of order alpha. Thus, the results in this paper complete the set of problems for the second Hankel determinants of f and f(-1) for the classes S* (alpha), K(alpha), S-beta* and K-beta, where S-beta*, and K-beta are, respectively, the classes of strongly starlike, and strongly convex functions of order beta.
引用
收藏
页码:2423 / 2443
页数:21
相关论文
共 16 条
  • [1] Ali R.M., 2003, B MALAYS MATH SCI SO, V26, P63
  • [2] The Bounds of Some Determinants for Starlike Functions of Order Alpha
    Cho, N. E.
    Kowalczyk, B.
    Kwon, O. S.
    Lecko, A.
    Sim, Y. J.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2018, 41 (01) : 523 - 535
  • [3] SOME COEFFICIENT INEQUALITIES RELATED TO THE HANKEL DETERMINANT FOR STRONGLY STARLIKE FUNCTIONS OF ORDER ALPHA
    Cho, N. E.
    Kowalczyk, B.
    Kwon, O. S.
    Lecko, A.
    Sim, Y. J.
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (02): : 429 - 439
  • [4] A general approach to the Fekete-Szego problem
    Choi, Jae Ho
    Kim, Yong Chan
    Sugawa, Toshiyuki
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2007, 59 (03) : 707 - 727
  • [5] Hayman WK., 1963, J LOND MATH SOC, V38, P228, DOI DOI 10.1112/JLMS/S1-38.1.228
  • [6] Janteng A., 2007, INT J MATH ANAL, V1, P619
  • [7] Krzyz JG., 1979, Ann. Univ. Mariae Curie-Sklodowska Sect. A, V33, P103
  • [8] EARLY COEFFICIENTS OF THE INVERSE OF A REGULAR CONVEX FUNCTION
    LIBERA, RJ
    ZLOTKIEWICZ, EJ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 85 (02) : 225 - 230
  • [9] COEFFICIENT BOUNDS FOR THE INVERSE OF A FUNCTION WITH DERIVATIVE IN P
    LIBERA, RJ
    ZLOTKIEWICZ, EJ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (02) : 251 - 257
  • [10] Analysis on simple conformable illustrations of unit circles I
    Lowner, K
    [J]. MATHEMATISCHE ANNALEN, 1923, 89 : 103 - 121