A posteriori error estimates for discontinuous Galerkin methods of obstacle problems

被引:26
作者
Wang, Fei [1 ,2 ]
Han, Weimin [3 ,4 ]
Eichholz, Joseph [5 ]
Cheng, Xiaoliang [6 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[3] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[4] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[5] Rose Hulman Inst Technol, Dept Math, Terre Haute, IN 47803 USA
[6] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
基金
美国国家科学基金会;
关键词
Elliptic variational inequality; Discontinuous Galerkin method; A posteriori error estimate; Residual-type error estimator;
D O I
10.1016/j.nonrwa.2014.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a posteriori error analysis of discontinuous Galerkin methods for solving the obstacle problem, which is a representative elliptic variational inequality of the first kind. We derive reliable error estimators of the residual type. Efficiency of the estimators is theoretically explored and numerically confirmed. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:664 / 679
页数:16
相关论文
共 50 条
[41]   A posteriori error estimation for a fully discrete discontinuous Galerkin approximation to a kind of singularly perturbed problems [J].
Chen, Yanping ;
Yang, Jiming .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2007, 43 (10) :757-770
[42]   A posteriori error estimation for a new stabilized discontinuous Galerkin method [J].
Romkes, A ;
Prudhomme, S ;
Oden, JT .
APPLIED MATHEMATICS LETTERS, 2003, 16 (04) :447-452
[43]   A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems [J].
Liang Wang ;
Chunguang Xiong ;
Huibin Wu ;
Fusheng Luo .
Advances in Computational Mathematics, 2019, 45 :2623-2646
[44]   A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems [J].
Wang, Liang ;
Xiong, Chunguang ;
Wu, Huibin ;
Luo, Fusheng .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (5-6) :2623-2646
[45]   A posteriori error estimation for discontinuous Galerkin finite element approximation [J].
Ainsworth, Mark .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (04) :1777-1798
[46]   Spectral Element Methods a Priori and a Posteriori Error Estimates for Penalized Unilateral Obstacle Problem [J].
Djeridi, Bochra ;
Ghanem, Radouen ;
Sissaoui, Hocine .
JOURNAL OF SCIENTIFIC COMPUTING, 2020, 85 (03)
[47]   Spectral Element Methods a Priori and a Posteriori Error Estimates for Penalized Unilateral Obstacle Problem [J].
Bochra Djeridi ;
Radouen Ghanem ;
Hocine Sissaoui .
Journal of Scientific Computing, 2020, 85
[48]   ENERGY NORM ERROR ESTIMATES FOR AVERAGED DISCONTINUOUS GALERKIN METHODS IN 1 DIMENSION [J].
Cseorgo, Gabor ;
Izsak, Ferenc .
INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2014, 11 (03) :567-586
[49]   A posteriori error estimates for a discontinuous Galerkin method applied to one-dimensional nonlinear scalar conservation laws [J].
Baccouch, Mahboub .
APPLIED NUMERICAL MATHEMATICS, 2014, 84 :1-21
[50]   The a posteriori error estimates and an adaptive algorithm of the discontinuous Galerkin method for the modified transmission eigenvalue problem with absorbing media [J].
Wang, Shixi ;
Bi, Hai ;
Yang, Yidu .
NUMERICAL ALGORITHMS, 2024,