A posteriori error estimates for discontinuous Galerkin methods of obstacle problems

被引:26
作者
Wang, Fei [1 ,2 ]
Han, Weimin [3 ,4 ]
Eichholz, Joseph [5 ]
Cheng, Xiaoliang [6 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[3] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[4] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[5] Rose Hulman Inst Technol, Dept Math, Terre Haute, IN 47803 USA
[6] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
基金
美国国家科学基金会;
关键词
Elliptic variational inequality; Discontinuous Galerkin method; A posteriori error estimate; Residual-type error estimator;
D O I
10.1016/j.nonrwa.2014.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a posteriori error analysis of discontinuous Galerkin methods for solving the obstacle problem, which is a representative elliptic variational inequality of the first kind. We derive reliable error estimators of the residual type. Efficiency of the estimators is theoretically explored and numerically confirmed. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:664 / 679
页数:16
相关论文
共 50 条
[31]   A posteriori error estimates and adaptivity for the discontinuous Galerkin solutions of nonlinear second-order initial-value problems [J].
Baccouch, Mahboub .
APPLIED NUMERICAL MATHEMATICS, 2017, 121 :18-37
[32]   Pointwise error estimates of discontinuous Galerkin methods with penalty for second-order elliptic problems [J].
Chen, ZX ;
Chen, HS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (03) :1146-1166
[33]   A Posteriori Error Estimates for HDG Methods [J].
Bernardo Cockburn ;
Wujun Zhang .
Journal of Scientific Computing, 2012, 51 :582-607
[34]   A Posteriori Error Estimates for HDG Methods [J].
Cockburn, Bernardo ;
Zhang, Wujun .
JOURNAL OF SCIENTIFIC COMPUTING, 2012, 51 (03) :582-607
[35]   A posteriori estimates for the Bubble Stabilized Discontinuous Galerkin Method [J].
Stamm, Benjamin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (15) :4309-4324
[36]   A posteriori discontinuous Galerkin error estimation on tetrahedral meshes [J].
Adjerid, Slimane ;
Mechai, Idir .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 201 :157-178
[37]   A posteriori error estimates for continuous/discontinuous Galerkin approximations of the Kirchhoff-Love buckling problem [J].
Hansbo, Peter ;
Larson, Mats G. .
COMPUTATIONAL MECHANICS, 2015, 56 (05) :815-827
[38]   A Posteriori Error Estimates for the Weak Galerkin Finite Element Methods on Polytopal Meshes [J].
Li, Hengguang ;
Mu, Lin ;
Ye, Xiu .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (02) :558-578
[39]   An a posteriori estimator of eigenvalue/eigenvector error for penalty-type discontinuous Galerkin methods [J].
Giani, Stefano ;
Grubisic, Luka ;
Hakula, Harri ;
Ovall, Jeffrey S. .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 319 :562-574
[40]   A priori and a posteriori error estimates of the weak Galerkin finite element method for parabolic problems [J].
Liu, Ying ;
Nie, Yufeng .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 99 :73-83