A posteriori error estimates for discontinuous Galerkin methods of obstacle problems

被引:25
作者
Wang, Fei [1 ,2 ]
Han, Weimin [3 ,4 ]
Eichholz, Joseph [5 ]
Cheng, Xiaoliang [6 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[3] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[4] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[5] Rose Hulman Inst Technol, Dept Math, Terre Haute, IN 47803 USA
[6] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
基金
美国国家科学基金会;
关键词
Elliptic variational inequality; Discontinuous Galerkin method; A posteriori error estimate; Residual-type error estimator;
D O I
10.1016/j.nonrwa.2014.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a posteriori error analysis of discontinuous Galerkin methods for solving the obstacle problem, which is a representative elliptic variational inequality of the first kind. We derive reliable error estimators of the residual type. Efficiency of the estimators is theoretically explored and numerically confirmed. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:664 / 679
页数:16
相关论文
共 50 条
[21]   A posteriori error estimates of discontinuous Galerkin methods for non-standard Volterra integro-differential equations [J].
Ma, JT ;
Brunner, H .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (01) :78-95
[22]   A Posteriori Error Estimates for Conservative Local Discontinuous Galerkin Methods for the Generalized Korteweg-de Vries Equation [J].
Karakashian, Ohannes ;
Xing, Yulong .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 20 (01) :250-278
[23]   Unified error analysis of discontinuous Galerkin methods for parabolic obstacle problem [J].
Papri Majumder .
Applications of Mathematics, 2021, 66 :673-699
[24]   A posteriori error estimates for continuous/discontinuous Galerkin approximations of the Kirchhoff–Love buckling problem [J].
Peter Hansbo ;
Mats G. Larson .
Computational Mechanics, 2015, 56 :815-827
[25]   UNIFIED ERROR ANALYSIS OF DISCONTINUOUS GALERKIN METHODS FOR PARABOLIC OBSTACLE PROBLEM [J].
Majumder, Papri .
APPLICATIONS OF MATHEMATICS, 2021, 66 (05) :673-699
[26]   Analysis of a posteriori error estimates of the discontinuous Galerkin method for nonlinear ordinary differential equations [J].
Baccouch, Mahboub .
APPLIED NUMERICAL MATHEMATICS, 2016, 106 :129-153
[27]   Energy norm a posteriori error estimates for discontinuous Galerkin approximations of the linear elasticity problem [J].
Hansbo, Peter ;
Larson, Mats G. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (45-46) :3026-3030
[28]   ERROR ESTIMATES FOR A CLASS OF DISCONTINUOUS GALERKIN METHODS FOR NONSMOOTH PROBLEMS VIA CONVEX DUALITY RELATIONS [J].
Bartels, Soren .
MATHEMATICS OF COMPUTATION, 2021, 90 (332) :2579-2602
[29]   A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations [J].
Liu, WB ;
Ma, HP ;
Tang, T ;
Yan, NN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (03) :1032-1061
[30]   A Posteriori Error Estimates of a Combined Mixed Finite Element and Discontinuous Galerkin Method for a Kind of Compressible Miscible Displacement Problems [J].
Yang, Jiming ;
Xiong, Zhiguan G. .
ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (02) :163-179