A posteriori error estimates for discontinuous Galerkin methods of obstacle problems

被引:25
|
作者
Wang, Fei [1 ,2 ]
Han, Weimin [3 ,4 ]
Eichholz, Joseph [5 ]
Cheng, Xiaoliang [6 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[3] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[4] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[5] Rose Hulman Inst Technol, Dept Math, Terre Haute, IN 47803 USA
[6] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
基金
美国国家科学基金会;
关键词
Elliptic variational inequality; Discontinuous Galerkin method; A posteriori error estimate; Residual-type error estimator;
D O I
10.1016/j.nonrwa.2014.08.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a posteriori error analysis of discontinuous Galerkin methods for solving the obstacle problem, which is a representative elliptic variational inequality of the first kind. We derive reliable error estimators of the residual type. Efficiency of the estimators is theoretically explored and numerically confirmed. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:664 / 679
页数:16
相关论文
共 50 条
  • [1] A POSTERIORI ERROR CONTROL OF DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC OBSTACLE PROBLEMS
    Gudi, Thirupathi
    Porwal, Kamana
    MATHEMATICS OF COMPUTATION, 2014, 83 (286) : 579 - 602
  • [2] A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem
    Gudi, Thirupathi
    Porwal, Kamana
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 292 : 257 - 278
  • [3] A Remark on the A Posteriori Error Analysis of Discontinuous Galerkin Methods for the Obstacle Problem
    Gudi, Thirupathi
    Porwal, Kamana
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2014, 14 (01) : 71 - 87
  • [4] A POSTERIORI ERROR ESTIMATES FOR A DISCONTINUOUS GALERKIN APPROXIMATION OF STEKLOV EIGENVALUE PROBLEMS
    Zeng, Yuping
    Wang, Feng
    APPLICATIONS OF MATHEMATICS, 2017, 62 (03) : 243 - 267
  • [5] A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems
    Yuping Zeng
    Feng Wang
    Applications of Mathematics, 2017, 62 : 243 - 267
  • [6] Functional A Posteriori Error Estimates for Discontinuous Galerkin Approximations of Elliptic Problems
    Lazarov, Raytcho
    Repin, Sergey
    Tomar, Satyendra K.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (04) : 952 - 971
  • [7] A POSTERIORI ERROR CONTROL FOR DISCONTINUOUS GALERKIN METHODS FOR PARABOLIC PROBLEMS
    Georgoulis, Emmanuil H.
    Lakkis, Omar
    Virtanen, Juha M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) : 427 - 458
  • [8] A POSTERIORI ERROR ESTIMATES FOR DISCONTINUOUS GALERKIN METHODS ON POLYGONAL AND POLYHEDRAL MESHES
    Cangiani, Andrea
    Dong, Zhaonan
    Georgoulis, Emmanuil H.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (05) : 2352 - 2380
  • [9] A posteriori error estimates for local discontinuous Galerkin methods of linear elasticity
    Chen, Yun-Cheng
    Huang, Jian-Guo
    Xu, Yi-Feng
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2011, 45 (12): : 1857 - 1862
  • [10] A Posteriori Error Bounds for Discontinuous Galerkin Methods for Quasilinear Parabolic Problems
    Georgoulis, Emmanuil H.
    Lakkis, Omar
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 351 - 358