Critical quantum metrology with fully-connected models: from Heisenberg to Kibble-Zurek scaling

被引:35
作者
Garbe, Louis [1 ]
Abah, Obinna [2 ,3 ]
Felicetti, Simone [4 ]
Puebla, Ricardo [3 ,5 ]
机构
[1] TU Wien, Atominst, Vienna Ctr Quantum Sci & Technol, A-1040 Vienna, Austria
[2] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[3] Queens Univ Belfast, Ctr Theoret Atom Mol & Opt Phys, Belfast BT7 1NN, Antrim, North Ireland
[4] CNR, IFN, Ist Foton & Nanotecnol, Via Cineto Romano 42, I-00156 Rome, Italy
[5] CSIC, Inst Fis Fundamental, IFF, Calle Serrano 113b, Madrid 28006, Spain
基金
英国工程与自然科学研究理事会; 奥地利科学基金会;
关键词
quantum metrology; quantum phase transitions; quantum critical phenomena; Kibble-Zurek mechanism; fully-connected models; PHASE-TRANSITION; DYNAMICS; SYSTEMS; GAS;
D O I
10.1088/2058-9565/ac6ca5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Phase transitions represent a compelling tool for classical and quantum sensing applications. It has been demonstrated that quantum sensors can in principle saturate the Heisenberg scaling, the ultimate precision bound allowed by quantum mechanics, in the limit of large probe number and long measurement time. Due to the critical slowing down, the protocol duration time is of utmost relevance in critical quantum metrology. However, how the long-time limit is reached remains in general an open question. So far, only two dichotomic approaches have been considered, based on either static or dynamical properties of critical quantum systems. Here, we provide a comprehensive analysis of the scaling of the quantum Fisher information for different families of protocols that create a continuous connection between static and dynamical approaches. In particular, we consider fully-connected models, a broad class of quantum critical systems of high experimental relevance. Our analysis unveils the existence of universal precision-scaling regimes. These regimes remain valid even for finite-time protocols and finite-size systems. We also frame these results in a general theoretical perspective, by deriving a precision bound for arbitrary time-dependent quadratic Hamiltonians.
引用
收藏
页数:41
相关论文
共 133 条
[1]   Experimental verification of anti-Kibble-Zurek behavior in a quantum system under a noisy control field [J].
Ai, Ming-Zhong ;
Cui, Jin-Ming ;
He, Ran ;
Qian, Zhong-Hua ;
Gao, Xin-Xia ;
Huang, Yun-Feng ;
Li, Chuan-Feng ;
Guo, Guang-Can .
PHYSICAL REVIEW A, 2021, 103 (01)
[2]   Quantum Metrology in Open Systems: Dissipative Cramer-Rao Bound [J].
Alipour, S. ;
Mehboudi, M. ;
Rezakhani, A. T. .
PHYSICAL REVIEW LETTERS, 2014, 112 (12)
[3]   Cavity quantum electrodynamics of strongly correlated electron systems: A no-go theorem for photon condensation [J].
Andolina, G. M. ;
Pellegrino, F. M. D. ;
Giovannetti, V ;
MacDonald, A. H. ;
Polini, M. .
PHYSICAL REVIEW B, 2019, 100 (12)
[4]   Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate [J].
Anquez, M. ;
Robbins, B. A. ;
Bharath, H. M. ;
Boguslawski, M. ;
Hoang, T. M. ;
Chapman, M. S. .
PHYSICAL REVIEW LETTERS, 2016, 116 (15)
[5]   Superradiance transition in a system with a single qubit and a single oscillator [J].
Ashhab, S. .
PHYSICAL REVIEW A, 2013, 87 (01)
[6]   Quantum phase transition in the Dicke model with critical and noncritical entanglement [J].
Bakemeier, L. ;
Alvermann, A. ;
Fehske, H. .
PHYSICAL REVIEW A, 2012, 85 (04)
[7]   Optimal nonlinear passage through a quantum critical point [J].
Barankov, Roman ;
Polkovnikov, Anatoli .
PHYSICAL REVIEW LETTERS, 2008, 101 (07)
[8]   Exact steady state of a Kerr resonator with one- and two-photon driving and dissipation: Controllable Wigner-function multimodality and dissipative phase transitions [J].
Bartolo, Nicola ;
Minganti, Fabrizio ;
Casteels, Wim ;
Ciuti, Cristiano .
PHYSICAL REVIEW A, 2016, 94 (03)
[9]   Dicke quantum phase transition with a superfluid gas in an optical cavity [J].
Baumann, Kristian ;
Guerlin, Christine ;
Brennecke, Ferdinand ;
Esslinger, Tilman .
NATURE, 2010, 464 (7293) :1301-U1
[10]   Nonlinear Quantum Metrology of Many-Body Open Systems [J].
Beau, M. ;
del Campo, A. .
PHYSICAL REVIEW LETTERS, 2017, 119 (01)