Kinetic Turbulence Simulations at Extreme Scale on Leadership-Class Systems

被引:12
作者
Wang, Bei [1 ]
Ethier, Stephane [2 ]
Tang, William [1 ,2 ]
Williams, Timothy [5 ]
Ibrahim, Khaled Z. [3 ]
Madduri, Kamesh [3 ,4 ]
Williams, Samuel [3 ]
Oliker, Leonid [3 ]
机构
[1] Princeton Univ, Princeton Inst Computat Sci & Engn, Princeton, NJ 08544 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ USA
[3] Lawrence Berkeley Natl Lab, Comp Res Div, Berkeley, CA USA
[4] Penn State Univ, Comp Sci Engn, University Pk, PA 16802 USA
[5] Argonne Natl Lab, Argonne Leadership Comp Fac, Argonne, IL 60439 USA
来源
2013 INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SC) | 2013年
关键词
GYROKINETIC PARTICLE SIMULATION; MICROTURBULENCE;
D O I
10.1145/2503210.2503258
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Reliable predictive simulation capability addressing confinement properties in magnetically confined fusion plasmas is critically-important for ITER, a 20 billion dollar international burning plasma device under construction in France. The complex study of kinetic turbulence, which can severely limit the energy confinement and impact the economic viability of fusion systems, requires simulations at extreme scale for such an unprecedented device size. Our newly optimized, global, ab initio particle-in-cell code solving the nonlinear equations underlying gyrokinetic theory achieves excellent performance with respect to "time to solution" at the full capacity of the IBM Blue Gene/Q on 786,432 cores of Mira at ALCF and recently of the 1,572,864 cores of Sequoia at LLNL. Recent multithreading and domain decomposition optimizations in the new GTC-P code represent critically important software advances for modern, low memory per core systems by enabling routine simulations at unprecedented size (130 million grid points ITER-scale) and resolution (65 billion particles).
引用
收藏
页数:12
相关论文
共 22 条
[1]   Performance of particle in cell methods on highly concurrent computational architectures [J].
Adams, M. F. ;
Ethier, S. ;
Wichmann, N. .
SCIDAC 2007: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2007, 78
[2]   An Eulerian gyrokinetic-Maxwell solver [J].
Candy, J ;
Waltz, RE .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 186 (02) :545-581
[3]   Comparisons and physics basis of tokamak transport models and turbulence simulations [J].
Dimits, AM ;
Bateman, G ;
Beer, MA ;
Cohen, BI ;
Dorland, W ;
Hammett, GW ;
Kim, C ;
Kinsey, JE ;
Kotschenreuther, M ;
Kritz, AH ;
Lao, LL ;
Mandrekas, J ;
Nevins, WM ;
Parker, SE ;
Redd, AJ ;
Shumaker, DE ;
Sydora, R ;
Weiland, J .
PHYSICS OF PLASMAS, 2000, 7 (03) :969-983
[4]   Large-scale gyrokinetic particle simulation of microturbulence in magnetically confined fusion plasmas [J].
Ethier, S. ;
Tang, W. M. ;
Walkup, R. ;
Oliker, L. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2008, 52 (1-2) :105-115
[5]  
Ethier S, 2005, J PHYS CONF SER, V16, P1, DOI [10.1088/1742-6596/16/1/001, 10.1088/1742-6596/16/l/001]
[6]  
Ethier S., 2010, P HIGH PERF COMP COM
[7]  
Faanes G., 2012, P INT C HIGH PERF CO
[8]   Dynamics of turbulence spreading in magnetically confined plasmas -: art. no. 032303 [J].
Gürcan, ÖD ;
Diamond, PH ;
Hahm, TS ;
Lin, Z .
PHYSICS OF PLASMAS, 2005, 12 (03) :1-15
[9]  
Ibrahim K. Z., 2013, INT J HIGH PERFORMAN
[10]   A global collisionless PIC code in magnetic coordinates [J].
Jolliet, S. ;
Bottino, A. ;
Angelino, P. ;
Hatzky, R. ;
Tran, T. M. ;
Mcmillan, B. F. ;
Sauter, O. ;
Appert, K. ;
Idomura, Y. ;
Villard, L. .
COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (05) :409-425