ASYMPTOTIC BEHAVIOUR NEAR EXTINCTION OF CONTINUOUS-STATE BRANCHING PROCESSES

被引:1
作者
Berzunza, Gabriel [1 ,3 ]
Carlos Pardo, Juan [2 ]
机构
[1] Univ Zurich, CH-8006 Zurich, Switzerland
[2] Ctr Invest Matemat, AC Calle Jalisco S-N, Guanajuato 36240, Mexico
[3] Univ Zurich, Inst Math, Winterthurerstr 190, CH-8057 Zurich, Switzerland
关键词
Continuous-state branching process; Lamperti transform; Levy process; conditioning to stay positive; rate of growth;
D O I
10.1017/jpr.2016.7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we study the asymptotic behaviour near extinction of (sub-)critical continuous-state branching processes. In particular, we establish an analogue of Khintchine's law of the iterated logarithm near extinction time for a continuous-state branching process whose branching mechanism satisfies a given condition.
引用
收藏
页码:381 / 391
页数:11
相关论文
共 10 条
[1]  
Bertoin J., 1996, LEVY PROCESSES
[2]  
Bingham N. H., 1976, Stochastic Processes & their Applications, V4, P217, DOI 10.1016/0304-4149(76)90011-9
[3]   The exact packing measure of Levy trees [J].
Duquesne, Thomas .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (03) :968-1002
[4]   ASYMPTOTIC-BEHAVIOR OF CONTINUOUS TIME, CONTINUOUS STATE-SPACE BRANCHING PROCESSES [J].
GREY, DR .
JOURNAL OF APPLIED PROBABILITY, 1974, 11 (04) :669-677
[5]   CONVERGENCE OF SEQUENCES OF BRANCHING PROCESSES [J].
GRIMVALL, A .
ANNALS OF PROBABILITY, 1974, 2 (06) :1027-1045
[6]  
Ji~rina M., 1958, Czechoslov. Math. J., V8, P292
[7]  
Kyprianou AE, 2008, J APPL PROBAB, V45, P1140
[8]   CONTINUOUS STATE BRANCHING PROCESSES [J].
LAMPERTI, J .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (03) :382-&
[9]   ON THE RATE OF GROWTH OF LEVY PROCESSES WITH NOPOSITIVE JUMPS CONDITIONED TO STAY POSITIVE [J].
Pardo, J. C. .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 :494-506
[10]  
SILVERSTEIN ML, 1968, J MATH MECH, V17, P1023