Observation of Stimulated Brillouin Scattering in Silicon Nitride Integrated Waveguides

被引:99
作者
Gyger, Flavien [1 ]
Liu, Junqiu [2 ]
Yang, Fan [1 ]
He, Jijun [2 ]
Raja, Arslan S. [2 ]
Wang, Rui Ning [2 ]
Bhave, Sunil A. [3 ]
Kippenberg, Tobias J. [2 ]
Thevenaz, Luc [1 ]
机构
[1] Swiss Fed Inst Technol Lausanne EPFL, Grp Fibre Opt, CH-1015 Lausanne, Switzerland
[2] Swiss Fed Inst Technol Lausanne EPFL, Lab Photon & Quantum Measurements, CH-1015 Lausanne, Switzerland
[3] Purdue Univ, OxideMEMS Lab, W Lafayette, IN 47907 USA
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
ACOUSTIC PHONONS; OPTICAL-FIBERS; LOW-POWER; LIGHT; RAMAN; LASER; GAIN;
D O I
10.1103/PhysRevLett.124.013902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Silicon nitride (Si3N4) has emerged as a promising material for integrated nonlinear photonics and has been used for broadband soliton microcombs and low-pulse-energy supercontinuum generation. Therefore, understanding all nonlinear optical properties of Si3N4 is important. So far, only stimulated Brillouin scattering (SBS) has not yet been reported. Here we observe, for the first time, backward SBS in fully cladded Si3N4 waveguides. The Brillouin gain spectrum exhibits an unusual multipeak structure resulting from hybridization with high-overtone bulk acoustic resonances of the silica cladding. The reported intrinsic Si3N4 Brillouin gain at 25 GHz is estimated as 4 x 10(-13 )m/W. Moreover, the magnitude of the Si3N4 photoelastic constant is estimated as vertical bar p(12)vertical bar = 0.047 +/- 0.004, which is nearly 6 times smaller than for silica. Since SBS imposes an optical power limitation for waveguides, our results explain the capability of Si3N4 to handle high optical power, central for integrated nonlinear photonics.
引用
收藏
页数:7
相关论文
共 67 条
[11]  
Dehghannasiri R, 2017, IEEE PHOTON CONF, P135, DOI 10.1109/IPCon.2017.8116038
[12]   Raman-like stimulated Brillouin scattering in phononic-crystal-assisted silicon-nitride waveguides [J].
Dehghannasiri, Razi ;
Eftekhar, Ali Asghar ;
Adibi, Ali .
PHYSICAL REVIEW A, 2017, 96 (05)
[13]   Brillouin integrated photonics [J].
Eggleton, Benjamin J. ;
Poulton, Christopher G. ;
Rakich, Peter T. ;
Steel, Michael J. ;
Bahl, Gaurav .
NATURE PHOTONICS, 2019, 13 (10) :664-677
[14]   Brillouin scattering self-cancellation [J].
Florez, O. ;
Jarschel, P. F. ;
Espinel, Y. A. V. ;
Cordeiro, C. M. B. ;
Mayer Alegre, T. P. ;
Wiederhecker, G. S. ;
Dainese, P. .
NATURE COMMUNICATIONS, 2016, 7
[15]   Broad-band optical parametric gain on a silicon photonic chip [J].
Foster, Mark A. ;
Turner, Amy C. ;
Sharping, Jay E. ;
Schmidt, Bradley S. ;
Lipson, Michal ;
Gaeta, Alexander L. .
NATURE, 2006, 441 (7096) :960-963
[16]   Photonic-chip-based frequency combs [J].
Gaeta, Alexander L. ;
Lipson, Michal ;
Kippenberg, Tobias J. .
NATURE PHOTONICS, 2019, 13 (03) :158-169
[17]   HIGH-RESOLUTION STIMULATED BRILLOUIN GAIN SPECTROMETER [J].
GRUBBS, WT ;
MACPHAIL, RA .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1994, 65 (01) :34-41
[18]   Brillouin Lasing with a CaF2 Whispering Gallery Mode Resonator [J].
Grudinin, Ivan S. ;
Matsko, Andrey B. ;
Maleki, Lute .
PHYSICAL REVIEW LETTERS, 2009, 102 (04)
[19]   Sub-hertz fundamental linewidth photonic integrated Brillouin laser [J].
Gundavarapu, Sarat ;
Brodnik, Grant M. ;
Puckett, Matthew ;
Huffman, Taran ;
Bose, Debapam ;
Behunin, Ryan ;
Wu, Jianfeng ;
Qiu, Tiequn ;
Pinho, Catia ;
Chauhan, Nitesh ;
Nohava, Jim ;
Rakich, Peter T. ;
Nelson, Karl D. ;
Salit, Mary ;
Blumenthal, Daniel J. .
NATURE PHOTONICS, 2019, 13 (01) :60-+
[20]  
Guo H., ARXIV190800871