Observation of Stimulated Brillouin Scattering in Silicon Nitride Integrated Waveguides

被引:99
作者
Gyger, Flavien [1 ]
Liu, Junqiu [2 ]
Yang, Fan [1 ]
He, Jijun [2 ]
Raja, Arslan S. [2 ]
Wang, Rui Ning [2 ]
Bhave, Sunil A. [3 ]
Kippenberg, Tobias J. [2 ]
Thevenaz, Luc [1 ]
机构
[1] Swiss Fed Inst Technol Lausanne EPFL, Grp Fibre Opt, CH-1015 Lausanne, Switzerland
[2] Swiss Fed Inst Technol Lausanne EPFL, Lab Photon & Quantum Measurements, CH-1015 Lausanne, Switzerland
[3] Purdue Univ, OxideMEMS Lab, W Lafayette, IN 47907 USA
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
ACOUSTIC PHONONS; OPTICAL-FIBERS; LOW-POWER; LIGHT; RAMAN; LASER; GAIN;
D O I
10.1103/PhysRevLett.124.013902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Silicon nitride (Si3N4) has emerged as a promising material for integrated nonlinear photonics and has been used for broadband soliton microcombs and low-pulse-energy supercontinuum generation. Therefore, understanding all nonlinear optical properties of Si3N4 is important. So far, only stimulated Brillouin scattering (SBS) has not yet been reported. Here we observe, for the first time, backward SBS in fully cladded Si3N4 waveguides. The Brillouin gain spectrum exhibits an unusual multipeak structure resulting from hybridization with high-overtone bulk acoustic resonances of the silica cladding. The reported intrinsic Si3N4 Brillouin gain at 25 GHz is estimated as 4 x 10(-13 )m/W. Moreover, the magnitude of the Si3N4 photoelastic constant is estimated as vertical bar p(12)vertical bar = 0.047 +/- 0.004, which is nearly 6 times smaller than for silica. Since SBS imposes an optical power limitation for waveguides, our results explain the capability of Si3N4 to handle high optical power, central for integrated nonlinear photonics.
引用
收藏
页数:7
相关论文
共 67 条
[1]   Nanotaper for compact mode conversion [J].
Almeida, VR ;
Panepucci, RR ;
Lipson, M .
OPTICS LETTERS, 2003, 28 (15) :1302-1304
[2]  
[Anonymous], ARXIV190110372
[3]   Optomechanical sensing of liquids outside standard fibers using forward stimulated Brillouin scattering [J].
Antman, Yair ;
Clain, Alex ;
London, Yosef ;
Zadok, Avi .
OPTICA, 2016, 3 (05) :510-516
[4]  
Auld BA., 1973, Acoustic fields and waves in solids
[5]   Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre [J].
Beugnot, Jean-Charles ;
Lebrun, Sylvie ;
Pauliat, Gilles ;
Maillotte, Herve ;
Laude, Vincent ;
Sylvestre, Thibaut .
NATURE COMMUNICATIONS, 2014, 5
[6]   Silicon Nitride in Silicon Photonics [J].
Blumenthal, Daniel J. ;
Heideman, Rene ;
Geuzebroek, Douwe ;
Leinse, Arne ;
Roeloffzen, Chris .
PROCEEDINGS OF THE IEEE, 2018, 106 (12) :2209-2231
[7]   NOISE INITIATION OF STIMULATED BRILLOUIN-SCATTERING [J].
BOYD, RW ;
RZAZEWSKI, K ;
NARUM, P .
PHYSICAL REVIEW A, 1990, 42 (09) :5514-5521
[8]  
Boyd RW, 2008, NONLINEAR OPTICS, 3RD EDITION, P1
[9]   Engineering Electron-Phonon Coupling of Quantum Defects to a Semiconfocal Acoustic Resonator [J].
Chen, Huiyao ;
Opondo, Noah F. ;
Jiang, Boyang ;
MacQuarrie, Evan R. ;
Daveau, Raphael S. ;
Bhave, Sunil A. ;
Fuchs, Gregory D. .
NANO LETTERS, 2019, 19 (10) :7021-7027
[10]   Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres [J].
Dainese, P. ;
Russell, P. St. J. ;
Joly, N. ;
Knight, J. C. ;
Wiederhecker, G. S. ;
Fragnito, H. L. ;
Laude, V. ;
Khelif, A. .
NATURE PHYSICS, 2006, 2 (06) :388-392