The Nil-Graph of Ideals of a Commutative Ring

被引:9
作者
Shaveisi, F. [1 ]
Nikandish, R. [2 ]
机构
[1] Razi Univ, Dept Math, Fac Sci, POB 67149-67346, Kermanshah, Iran
[2] Jundi Shapur Univ Technol, Dept Basic Sci, Dezful, Iran
关键词
Nil-graph; Ideal; Artinian ring; Reduced ring; Chromatic number; Clique number;
D O I
10.1007/s40840-015-0265-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity and Nil(R) be the set of nilpotent elements of R. The nil- graph of ideals of R is defined as the graph AGN (R) whose vertex set is {I : (0) not equal I R, and there exists a nontrivial ideal J such that I J subset of Nil(R)} and two distinct vertices I and J are adjacent if and only if I J subset of Nil(R). Here, some graph properties of AG(N) (R) are studied. For instance, some bounds for the diameter, girth, and radius of AG(N) (R) are given. In case that AG(N) (R) is a finite graph, it is proved that the center and median of AG(N) (R) coincide. Furthermore, we determine when the edge chromatic number of AG(N) (R) equals its maximum degree. Also, for every ring R, it is shown that both the clique number and vertex chromatic number of AG(N) (R) equal n + t, where n is the number of minimal prime ideals of R and t is the number of nonzero ideals of R which are contained in Nil(R).
引用
收藏
页码:S3 / S11
页数:9
相关论文
共 17 条
[1]   MINIMAL PRIME IDEALS AND CYCLES IN ANNIHILATING-IDEAL GRAPHS [J].
Aalipour, G. ;
Akbari, S. ;
Nikandish, R. ;
Nikmehr, M. J. ;
Shaveisi, F. .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (05) :1415-1425
[2]   On the coloring of the annihilating-ideal graph of a commutative ring [J].
Aalipour, G. ;
Akbari, S. ;
Nikandish, R. ;
Nikmehr, M. J. ;
Shaveisi, F. .
DISCRETE MATHEMATICS, 2012, 312 (17) :2620-2626
[3]  
Afkhami M, 2014, B MALAYS MATH SCI SO, V37, P833
[4]   Some results on the intersection graph of ideals of matrix algebras [J].
Akbari, S. ;
Nikandish, R. .
LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (02) :195-206
[5]  
Anderson D.F., 2011, Commutative Algebra: Noetherian and Non-Noetherian Perspectives, P23
[6]  
Anderson F.W., 1999, RINGS CATEGORIES MOD
[7]  
Atiyah M. F., 1969, Introduction to Commutative Algebra
[8]   THE ANNIHILATING-IDEAL GRAPH OF COMMUTATIVE RINGS I [J].
Behboodi, M. ;
Rakeei, Z. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (04) :727-739
[9]  
Beineke L.W., 1978, Selected Topics in Graph Theory
[10]  
Bondy J., 2008, GRADUATE TEXTS MATH