Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle

被引:145
作者
Haas, TL
Milkiewicz, M
Davis, SJ
Zhou, AL
Egginton, S
Brown, MD
Madri, JA
Hudlicka, O
机构
[1] Yale Univ, Dept Pathol, New Haven, CT 06515 USA
[2] Univ Birmingham, Dept Physiol, Birmingham B15 2TT, W Midlands, England
来源
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY | 2000年 / 279卷 / 04期
关键词
proteolysis; endothelium; extensor digitorum longus; chronic electrical stimulation; extracellular matrix;
D O I
10.1152/ajpheart.2000.279.4.H1540
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Proteolysis of the capillary basement membrane is a hallmark of inflammation-mediated angiogenesis, but it is undetermined whether proteolysis plays a critical role in the process of activity-induced angiogenesis. Matrix metalloproteinases (MMPs) constitute the major class of proteases responsible for degradation of basement membrane proteins. We observed significant elevations of mRNA and protein levels of both MMP-2 and membrane type 1 (MT1)-MMP (2.9 +/- 0.7- and 1.5 +/- 0.1-fold above control, respectively) after 3 days of chronic electrical stimulation of rat skeletal muscle. Inhibition of MMP activity via the inhibitor GM-6001 prevented the growth of new capillaries as assessed by the capillary-to-fiber ratio (1.34 +/- 0.08 in GM-6001-treated muscles compared with 1.69 +/- 0.03 in control 7-day-stimulated muscles). This inhibition correlated with a significant reduction in the number of capillaries with observable breaks in the basement membrane, as assessed by electron microscopy (0.27 +/- 0.27% in GM-6001-treated muscles compared with 3.72 +/- 0.65% in control stimulated muscles). Proliferation of capillary-associated cells was significantly elevated by 2 days and remained elevated throughout 14 days of stimulation. Capillary-associated cell proliferation during muscle stimulation was not affected by MMP inhibition (80.3 +/- 9.3 nuclei in control and 63.5 +/- 8.5 nuclei in GM-6001-treated animals). We conclude that MMP proteolysis of capillary basement membrane proteins is a critical component of physiological angiogenesis, and we postulate that capillary-associated proliferation precedes and occurs independently of endothelial cell sprout formation.
引用
收藏
页码:H1540 / H1547
页数:8
相关论文
共 41 条
[1]   MIGRATION AND PROLIFERATION OF ENDOTHELIAL CELLS IN PREFORMED AND NEWLY FORMED BLOOD-VESSELS DURING TUMOR ANGIOGENESIS [J].
AUSPRUNK, DH ;
FOLKMAN, J .
MICROVASCULAR RESEARCH, 1977, 14 (01) :53-65
[2]   Inhibition of matrix metalloproteinase activity inhibits smooth muscle cell migration but not neointimal thickening after arterial injury [J].
Bendeck, MP ;
Irvin, C ;
Reidy, MA .
CIRCULATION RESEARCH, 1996, 78 (01) :38-43
[3]   PROTEOLYTIC REMODELING OF EXTRACELLULAR-MATRIX [J].
BIRKEDALHANSEN, H .
CURRENT OPINION IN CELL BIOLOGY, 1995, 7 (05) :728-735
[4]   Angiogenic growth factor mRNA responses in muscle to a single bout of exercise [J].
Breen, EC ;
Johnson, EC ;
Wagner, H ;
Tseng, HM ;
Sung, LA ;
Wagner, PD .
JOURNAL OF APPLIED PHYSIOLOGY, 1996, 81 (01) :355-361
[5]   Low-molecular-mass endothelial cell-stimulating angiogenic factor in relation to capillary growth induced in rat skeletal muscle by low-frequency electrical stimulation [J].
Brown, MD ;
Hudlicka, O ;
Makki, RF ;
Weiss, JB .
INTERNATIONAL JOURNAL OF MICROCIRCULATION-CLINICAL AND EXPERIMENTAL, 1995, 15 (03) :111-116
[6]   EFFECTS OF DIFFERENT PATTERNS OF MUSCLE-ACTIVITY ON CAPILLARY DENSITY, MECHANICAL-PROPERTIES AND STRUCTURE OF SLOW AND FAST RABBIT MUSCLES [J].
BROWN, MD ;
COTTER, MA ;
HUDLICKA, O ;
VRBOVA, G .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1976, 361 (03) :241-250
[7]   Pulsatile stretch and shear stress: Physical stimuli determining the production of endothelium-derived relaxing factors [J].
Busse, R ;
Fleming, I .
JOURNAL OF VASCULAR RESEARCH, 1998, 35 (02) :73-84
[8]   Regulation of extracellular matrix synthesis by mechanical stress [J].
Chiquet, M ;
Matthisson, M ;
Koch, M ;
Tannheimer, M ;
ChiquetEhrismann, R .
BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE, 1996, 74 (06) :737-744
[10]  
DAWSON JM, 1993, INT J EXP PATHOL, V74, P65