Fast Self-Healing of Graphene Oxide-Hectorite Clay-Poly(N,N-dimethylacrylamide) Hybrid Hydrogels Realized by Near-Infrared Irradiation

被引:102
作者
Zhang, Enzhong
Wang, Tao
Zhao, Lei
Sun, Weixiang
Liu, Xinxing
Tong, Zhen [1 ]
机构
[1] S China Univ Technol, Res Inst Mat Sci, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
self-healing; hybrid hydrogel; graphene oxide; near-infrared; PDMAA; SUPRAMOLECULAR HYDROGELS; NANOCOMPOSITE HYDROGELS; TOUGH; THERAPY; ENERGY;
D O I
10.1021/am507100m
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Self-healing hydrogels were proposed to be used as biomaterials, because of the capability of spontaneously healing injury, but most of the reported self-healing hydrogels do not possess high mechanical strength and fast self-healing at the same time. Herein, we prepared graphene oxide (GO)-hectorite clay-poly(N,N-dimethylacrylamide) (PDMAA) hybrid hydrogels with enhanced mechanical properties and fast self-healing capability realized by near-infrared (NIR) irradiation. The physical cross-linking between clay sheets and PDMAA chains provided the hydrogel with mechanical strength to maintain its stability in shape and architecture. GO sheets in the hybrid hydrogels acted as not only a collaborative cross-linking agent but also as a NIR absorber to absorb the NIR irradiation energy and transform it to thermal energy rapidly and efficiently, resulting in a rapid temperature increase of the GO containing gels. The chain mutual diffusion and the reformation of physical cross-linking occurred more quickly at higher temperature; consequently, the damaged hydrogel was almost completely recovered in a few minutes upon irradiation. We also demonstrated a potential application of the hybrid hydrogel as a self-healing surgical dressing.
引用
收藏
页码:22855 / 22861
页数:7
相关论文
共 49 条
[1]  
Acik M, 2010, NAT MATER, V9, P840, DOI [10.1038/NMAT2858, 10.1038/nmat2858]
[2]  
[Anonymous], ANGEW CHEM
[3]   Self-healing biomaterials [J].
Brochu, Alice B. W. ;
Craig, Stephen L. ;
Reichert, William M. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2011, 96A (02) :492-506
[4]   A Healable Supramolecular Polymer Blend Based on Aromatic π-π Stacking and Hydrogen-Bonding Interactions [J].
Burattini, Stefano ;
Greenland, Barnaby W. ;
Merino, Daniel Hermida ;
Weng, Wengui ;
Seppala, Jonathan ;
Colquhoun, Howard M. ;
Hayes, Wayne ;
Mackay, Michael E. ;
Hamley, Ian W. ;
Rowan, Stuart J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (34) :12051-12058
[5]   Optically healable supramolecular polymers [J].
Burnworth, Mark ;
Tang, Liming ;
Kumpfer, Justin R. ;
Duncan, Andrew J. ;
Beyer, Frederick L. ;
Fiore, Gina L. ;
Rowan, Stuart J. ;
Weder, Christoph .
NATURE, 2011, 472 (7343) :334-U230
[6]   Self-Healing Materials Based on Disulfide Links [J].
Canadell, Judit ;
Goossens, Han ;
Klumperman, Bert .
MACROMOLECULES, 2011, 44 (08) :2536-2541
[7]   Mussel Inspired Dynamic Cross-Linking of Self-Healing Peptide Nanofiber Network [J].
Ceylan, Hakan ;
Urel, Mustafa ;
Erkal, Turan S. ;
Tekinay, Ayse B. ;
Dana, Aykutlu ;
Guler, Mustafa O. .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (16) :2081-2090
[8]  
Chen YL, 2012, NAT CHEM, V4, P467, DOI [10.1038/nchem.1314, 10.1038/NCHEM.1314]
[9]   Biomedical Applications of Graphene and Graphene Oxide [J].
Chung, Chul ;
Kim, Young-Kwan ;
Shin, Dolly ;
Ryoo, Soo-Ryoon ;
Hong, Byung Hee ;
Min, Dal-Hee .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (10) :2211-2224
[10]   Multivalent H-bonds for self-healing hydrogels [J].
Cui, Jiaxi ;
del Campo, Aranzazu .
CHEMICAL COMMUNICATIONS, 2012, 48 (74) :9302-9304