Momentum Sections in Hamiltonian Mechanics and Sigma Models

被引:7
作者
Ikeda, Noriaki [1 ]
机构
[1] Ritsumeikan Univ, Dept Math Sci, Kusatsu, Shiga 5258577, Japan
关键词
symplectic geometry; Lie algebroid; Hamiltonian mechanics; nonlinear sigma model; LIE ALGEBROIDS; GEOMETRY;
D O I
10.3842/SIGMA.2019.076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show a constrained Hamiltonian system and a gauged sigma model have a structure of a momentum section and a Hamiltonian Lie algebroid theory recently introduced by Blohmann and Weinstein. We propose a generalization of a momentum section on a pre-multisymplectic manifold by considering gauged sigma models on higher-dimensional manifolds.
引用
收藏
页数:16
相关论文
共 27 条
  • [1] ATLAS Collaboration, 2018, JHEP, V3, P95, DOI DOI 10.1007/JHEP08(2016)159
  • [2] Blohmann C., ARXIV181111109
  • [3] GROUPOID SYMMETRY AND CONSTRAINTS IN GENERAL RELATIVITY
    Blohmann, Christian
    Barbosa Fernandes, Marco Cezar
    Weinstein, Alan
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (01)
  • [4] Hidden isometry of "T-duality without isometry"
    Bouwknegt, Peter
    Bugden, Mark
    Klimcik, Ctirad
    Wright, Kyle
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (08):
  • [5] Reduction of Courant algebroids and generalized complex structures
    Bursztyn, Henrique
    Cavalcanti, Gil R.
    Gualtieri, Marco
    [J]. ADVANCES IN MATHEMATICS, 2007, 211 (02) : 726 - 765
  • [6] PATH-INTEGRAL DERIVATION OF QUANTUM DUALITY IN NONLINEAR SIGMA-MODELS
    BUSCHER, TH
    [J]. PHYSICS LETTERS B, 1988, 201 (04) : 466 - 472
  • [7] A SYMMETRY OF THE STRING BACKGROUND FIELD-EQUATIONS
    BUSCHER, TH
    [J]. PHYSICS LETTERS B, 1987, 194 (01) : 59 - 62
  • [8] Homotopy moment maps
    Callies, Martin
    Fregier, Yael
    Rogers, Christopher L.
    Zambon, Marco
    [J]. ADVANCES IN MATHEMATICS, 2016, 303 : 954 - 1043
  • [9] Carinena J. F., 1991, Differential Geometry and its Applications, V1, P345, DOI 10.1016/0926-2245(91)90013-Y
  • [10] Cavalcanti GR, 2010, CRM PROC & LECT NOTE, V50, P341