Global existence and optimal time-decay estimates of solutions to the generalized double dispersion equation on the framework of Besov spaces

被引:5
作者
Wang, Yuzhu [1 ]
Xu, Jiang [2 ]
Kawashima, Shuichi [3 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou 450011, Henan, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Jiangsu, Peoples R China
[3] Waseda Univ, Fac Sci & Engn, Tokyo 1698555, Japan
基金
中国国家自然科学基金;
关键词
Generalized double dispersion equation; Global existence; Optimal decay estimates; Critical Besov spaces; BOUNDARY-VALUE-PROBLEM; ASYMPTOTIC-BEHAVIOR; CAUCHY-PROBLEM; PLATE EQUATION; WAVE-EQUATION; ATTRACTOR; PROPERTY; RATES;
D O I
10.1016/j.jmaa.2019.123455
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the initial value problem for the generalized double dispersion equation in any dimensions. Inspired by [28] for the hyperbolic system of first order PDEs, we develop Littlewood-Paley pointwise energy estimates for the dissipative wave equation of high-order. Furthermore, with aid of the frequency-localization Duhamel principle, we establish the global existence and optimal decay estimates of solutions in spatially critical Besov spaces. Our results could hold true for any dimensions (n >= 1). Indeed, the proofs are different in case of high dimensions and low dimensions owing to interpolation tricks. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 33 条
[1]  
[Anonymous], 1983, MONOGRAPH MATH
[2]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7
[3]  
Chen GW, 2008, ACTA MATH SCI, V28, P573
[4]   Initial boundary value problem of the generalized cubic double dispersion equation [J].
Chen, GW ;
Wang, YP ;
Wang, SB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 299 (02) :563-577
[5]   Optimal decay rates and asymptotic profile for the plate equation with structural damping [J].
Horbach, Jaqueline Luiza ;
Ikehata, Ryo ;
Charao, Ruy Coimbra .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 440 (02) :529-560
[6]   Decay property of regularity-loss type for dissipative Timoshenko system [J].
Ide, Kentaro ;
Haramoto, Kazuo ;
Kawashima, Shuichi .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (05) :647-667
[7]   Asymptotic profiles for wave equations with strong damping [J].
Ikehata, Ryo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) :2159-2177
[8]   ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE GENERALIZED CUBIC DOUBLE DISPERSION EQUATION IN ONE SPACE DIMENSION [J].
Kato, Masakazu ;
Wang, Yu-Zhu ;
Kawashima, Shuichi .
KINETIC AND RELATED MODELS, 2013, 6 (04) :969-987
[9]   Global existence and asymptotic behavior of solutions to the generalized cubic double dispersion equation [J].
Kawashima, Shuichi ;
Wang, Yu-Zhu .
ANALYSIS AND APPLICATIONS, 2015, 13 (03) :233-254
[10]   GLOBAL EXISTENCE AND DECAY OF SOLUTIONS FOR A QUASI-LINEAR DISSIPATIVE PLATE EQUATION [J].
Liu, Yongqin ;
Kawashima, Shuichi .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2011, 8 (03) :591-614