SAE-RNN Deep Learning for RGB-D Based Object Recognition

被引:0
作者
Bai, Jing [1 ]
Wu, Yan [1 ]
机构
[1] Tongji Univ, Coll Elect & Informat Engn, Shanghai 201804, Peoples R China
来源
INTELLIGENT COMPUTING THEORY | 2014年 / 8588卷
关键词
RGB-D Based Object Recognition; Sparse Auto-Encoder; Recursive Neural Networks; Feature Extracting; Deep Learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
RGB-D image is a multimodal data. Previous works have proved that using color and depth images together can dramatically increase the RGB-D based object recognition accuracy, but most of them either simply take all modalities as input, ignoring information about specific modalities, or train a first layer representation for each modality separately and concatenate them ignoring correlated modality information. In this paper, we use a variant of the sparse auto-encoder (SAE) which can specify how mode-sparse or mode-dense the features should be. A new deep learning network combining the variant SAE with the recursive neural networks (RNNs) was proposed. Through it, we got very discriminating features and obtained state of the art performance on a standard RGB-D object dataset.
引用
收藏
页码:235 / 240
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 2012, P 26 ANN C NEUR PROC, DOI DOI 10.1002/2014GB005021
[2]  
[Anonymous], 2011, CS294A LECT NOTES
[3]  
[Anonymous], 2013, ARXIV13013592
[4]  
[Anonymous], 2011, 22 INT JT C ART INT, DOI 10.5555/2283516.2283603
[5]  
Blum M, 2012, IEEE INT CONF ROBOT, P1298, DOI 10.1109/ICRA.2012.6225188
[6]  
Bo L., 2013, EXPT ROBOTICS, P387, DOI DOI 10.1007/978-3-319-00065-7
[7]  
Bo LF, 2011, IEEE INT C INT ROBOT, P821, DOI 10.1109/IROS.2011.6048717
[8]  
Jalali A., 2010, NIPS, P77
[9]  
Lai K, 2011, IEEE INT CONF ROBOT, P1817
[10]  
Ngiam J., 2011, PROC ICML, P689