Improvement on the catalytic performances of butyl levulinate hydrogenation to γ-valerolactone over self-regenerated CuNiCoB/Palygorskite catalyst

被引:11
作者
Guo, Haijun [1 ,2 ,3 ,4 ,5 ]
Ding, Shuai [1 ,3 ,4 ,5 ,6 ]
Zhang, Hairong [1 ,3 ,4 ,5 ]
Wang, Can [1 ,3 ,4 ,5 ]
Peng, Fen [1 ,3 ,5 ]
Xiong, Lian [1 ,3 ,4 ,5 ]
Chen, Xinde [1 ,3 ,4 ,5 ]
Ouyang, Xinping [2 ]
机构
[1] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Guangdong, Peoples R China
[2] South China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510640, Guangdong, Peoples R China
[3] Chinese Acad Sci, Key Lab Renewable Energy, Guangzhou 510640, Guangdong, Peoples R China
[4] Guangdong Prov Key Lab New & Renewable Energy Res, Guangzhou 510640, Guangdong, Peoples R China
[5] Chinese Acad Sci, R&D Ctr Xuyi Attapulgite Energy & Environm Mat, Guangzhou Inst Energy Convers, Xuyi 211700, Jiangsu, Peoples R China
[6] Univ Sci & Technol China, Nano Sci & Technol Inst, Suzhou 215123, Jiangsu, Peoples R China
来源
MOLECULAR CATALYSIS | 2021年 / 504卷
基金
中国国家自然科学基金;
关键词
Catalytic hydrogenation; Butyl levulinate; CuNiCoB amorphous alloy; Acid-activated palygorskite; gamma-Valerolactone; AMORPHOUS ALLOY CATALYST; MIXED ALCOHOLS SYNTHESIS; ETHYL LEVULINATE; FURFURYL ALCOHOL; SELECTIVE HYDROGENATION; EFFICIENT HYDROGENATION; PHASE HYDROGENATION; CHEMICAL-REDUCTION; NI-B; ACID;
D O I
10.1016/j.mcat.2021.111483
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The acid-activated Palygorskite (H+-PAL) was applied to support Cu(M)NiCoB amorphous alloy catalysts with high-activity and self-regeneration ability for selective hydrogenation of butyl levulinate (BL) to gamma-valerolactone (GVL). The catalysts were characterized by ICP-OES, nitrogen physisorption, XRD, FE-SEM, TEM, XPS, H-2-TPD, NH3-TPD and FTIR-pyridine adsorption techniques. Compared to the unsupported Cu0.5Ni1Co1B catalyst, the Cu0.5Ni1Co1B/H+-PAL catalyst showed the highest GVL yield of 96.3 % with BL conversion of 99.7 % at 200 degrees C. When Mo was doped into the Cu0.5Ni1Co1B/H+-PAL catalyst, the GVL yield showed gradually increase to 95.7 % with BL conversion of 100 % after five times run. The high activity and self-regeneration ability was attributed to the Mo doping effect and the synthetic effect between Cu hydrogenation active species and H+-PAL support. Various characterization results indicated that Mo acted as both structural promoter to improve the dispersion of metallic Cu and CuMoNiCoB amorphous alloy and electronic promoter to enhance the formation and increase the fraction of Cu+ species. In addition, the incorporation of Mo provided more Lewis acid sites to promote BL conversion to GVL and GVL conversion to 1,4-PDO and n-PeOH. On the basis of characterization and catalytic performance testing results, the synergistic effect between CuMoNiCoB amorphous alloy and Cu2O/Cu hydrogenation sites and Lewis/Bronsted acid site of H+-PAL support is considered to be the key to produce GVL.
引用
收藏
页数:12
相关论文
共 37 条
[21]   Bayesian Statistics to Elucidate the Kinetics of γ-Valerolactone from n-Butyl Levulinate Hydrogenation over Ru/C [J].
Capecci, Sarah ;
Wang, Yanjun ;
Delgado, Jose ;
Moreno, Valeria Casson ;
Mignot, Melanie ;
Grenman, Henrik ;
Murzin, Dmitry Yu ;
Leveneur, Sebastien .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (31) :11725-11736
[22]   Boosting γ-valerolactone production from ethyl levulinate hydrogenation over Pd catalyst via alloying with Co and synergistic catalysis with HZSM-5 [J].
Shan, Jianfeng ;
Chen, Zheng ;
Wang, Dengfeng ;
Zhang, Guangyu ;
Li, Sheng ;
Sun, Chuan ;
Wang, Dongchao ;
Ju, Caixia ;
Zhang, Xuelan ;
Li, Lei .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2025, 362
[23]   Catalytic Transfer Hydrogenation of Ethyl Levulinate into γ-Valerolactone Over Zirconium Oxide Derived from Zirconyl Nitrate [J].
Dong, Kaijun ;
Zhang, Jun ;
Luo, Weimin ;
Su, Lin ;
Huang, Zhilin .
JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2017, 11 (06) :543-552
[24]   Catalytic transfer hydrogenation of ethyl levulinate into γ-valerolactone over mesoporous Zr/B mixed oxides [J].
He, Jian ;
Li, Hu ;
Liu, Yanxiu ;
Zhao, Wenfeng ;
Yang, Tingting ;
Xue, Wei ;
Yang, Song .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2016, 43 :133-141
[25]   Efficient synthesis of γ-valerolactone from ethyl levulinate via catalytic transfer hydrogenation in supercritical isopropanol over nickel aluminum oxide nanosheets [J].
Zhang, Dongjie ;
Zhang, Yue ;
Li, Yifei ;
Wang, Zanhong ;
Zhang, Yin ;
Li, Haitao .
JOURNAL OF SUPERCRITICAL FLUIDS, 2024, 209
[26]   Selective hydrogenation of butyl levulinate to γ-valerolactone over sulfonated activated carbon-supported SnRuB bifunctional catalysts [J].
Ding, Shuai ;
Zhang, Hairong ;
Li, Bo ;
Xu, Wenping ;
Chen, Xuefang ;
Yao, Shimiao ;
Xiong, Lian ;
Guo, Haijun ;
Chen, Xinde .
NEW JOURNAL OF CHEMISTRY, 2022, 46 (03) :1381-1391
[27]   Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone Over Ni Supported on Equilibrium Fluid-Catalytic-Cracking Catalysts [J].
Han Chen ;
Qiong Xu ;
Hui Li ;
Jian Liu ;
Xianxiang Liu ;
Geng Huang ;
Dulin Yin .
Catalysis Letters, 2021, 151 :538-547
[28]   Catalytic Transfer Hydrogenation of Biomass-Derived Ethyl Levulinate into Gamma-Valerolactone Over Graphene Oxide-Supported Zirconia Catalysts [J].
Lai, Jinhua ;
Zhou, Shuolin ;
Liu, Xianxiang ;
Yang, Yongjun ;
Lei, Jing ;
Xu, Qiong ;
Yin, Dulin .
CATALYSIS LETTERS, 2019, 149 (10) :2749-2757
[29]   Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium (IV) Schiff base complexes on mesoporous silica with isopropanol as hydrogen source [J].
Wang, Ruiying ;
Wang, Jianjia ;
Zi, Huimin ;
Xia, Yongmei ;
Wang, Haijun ;
Liu, Xiang .
MOLECULAR CATALYSIS, 2017, 441 :168-178
[30]   Liquid phase catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over ZrO2/SBA-15 [J].
Osatiashtiani, Amin ;
Orr, Samantha A. ;
Durndell, Lee J. ;
Collado Garcia, Irene ;
Merenda, Andrea ;
Lee, Adam F. ;
Wilson, Karen .
CATALYSIS SCIENCE & TECHNOLOGY, 2022, 12 (18) :5611-5619