On the spectrum of Schur complements of 2D elastic clusters joined by rigid edge modes and hybrid domain decomposition

被引:5
作者
Dostal, Zdenek [1 ,2 ]
Brzobohaty, Tomas [2 ]
Vlach, Oldrich [1 ,2 ]
Riha, Lubomir [2 ]
机构
[1] VSB Tech Univ Ostrava, Fac Elect Engn & Comp Sci, Dept Appl Math, Ostrava, Czech Republic
[2] VSB Tech Univ Ostrava, Natl Supercomp Ctr, IT4Innovat, Ostrava, Czech Republic
关键词
PRIMAL FETI METHODS; PARALLEL SOLUTION; DP ALGORITHM; CONVERGENCE; BDDC;
D O I
10.1007/s00211-022-01307-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The hybrid FETI-DP method proposed by Klawonn and Rheinbach uses a two-level decomposition of the domain into subdomains and clusters. Here we give bounds on the regular condition number of the clusters obtained by interconnecting the Schur complements of square elastic subdomains by the average rigid body modes of adjacent edges. Using the angles of subspaces and bounds on the spectrum of the subdomains' Schur complements, we show that the conditioning of clusters comprising in x m square subdomains increases proportionally to m. The estimate supports the scalability of the unpreconditioned hybrid FETI-DP method for both linear and contact problems. The numerical experiments confirm the efficiency of a coarse grid split between the primal and dual variables and indicate that hybrid FETI-DP with large clusters is a competitive tool for solving huge elasticity problems.
引用
收藏
页码:41 / 66
页数:26
相关论文
共 44 条
[1]  
[Anonymous], ESPRESO HIGHLY PARAL
[2]  
Axelsson O., 1994, ITERATIVE SOLUTION M, DOI DOI 10.1017/CBO9780511624100
[3]   The condition number of the Schur complement in domain decomposition [J].
Brenner, SC .
NUMERISCHE MATHEMATIK, 1999, 83 (02) :187-203
[4]  
Brzobohaty T., 2013, P 3 INT C PAR DISTR
[5]  
Dost?l Z., 2016, SCALABLE ALGORITHMS, DOI [10.1007/978-1-4939-6834-3, DOI 10.1007/978-1-4939-6834-3]
[6]   Duality-based domain decomposition with natural coarse-space for variational inequalities [J].
Dostál, Z ;
Neto, FAMG ;
Santos, SA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 126 (1-2) :397-415
[7]   Reorthogonalization-based stiffness preconditioning in FETI algorithms with applications to variational inequalities [J].
Dostal, Z. ;
Kozubek, T. ;
Vlach, O. ;
Brzobohaty, T. .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2015, 22 (06) :987-998
[8]   A scalable FETI-DP algorithm for a coercive variational inequality [J].
Dostál, Z ;
Horák, D ;
Stefanica, D .
APPLIED NUMERICAL MATHEMATICS, 2005, 54 (3-4) :378-390
[9]  
Dostal Z., BOUNDS SPECTRA UNPUB
[10]  
Dostal Z., P 26 DOMAIN DECOMPOS