Fast Line Detection Method for Railroad Switch Machine Monitoring System

被引:0
|
作者
Li, Qingfeng [1 ]
Shi, Jifang [1 ]
Li, Chen [1 ]
机构
[1] Ningbo Univ Technol, Coll Elect & Informat Engn, Ningbo 315016, Peoples R China
来源
PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND SIGNAL PROCESSING | 2009年
关键词
Image Processing; Edge Detector; Thinning Method; Hough Transform; Switch Machine; FAST HOUGH TRANSFORM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Railroad Switch Machine Monitoring System is an important system for realizing centralized supervision, comprehensive evaluation, and accident prevention. There is a need to improve the maintenance of electric switch machines, in particular the locking mechanism, which needs precise adjustment to within 0.1 mm. The work that we present here is concerned with the application of an image processing algorithm that detects the Indication Indentation of switch machines. In this study, the Canny Edge Detector is used to obtain the edge values in binary image. The Zhang Suen Thinning Method is used to reduce the thickness of the edges. In post-processing, the Probabilistic Hough Transform (PHT) is used to detect the lines through the edge lines obtained. The proposed approach significantly improves the performance of the line detection and makes the transform more robust to the detection of the spurious lines.
引用
收藏
页码:61 / 64
页数:4
相关论文
共 50 条
  • [41] A fast target location method for the photogrammetry system
    Wang Jun
    Dong Mingli
    Liang Bo
    FOURTH INTERNATIONAL SEMINAR ON MODERN CUTTING AND MEASUREMENT ENGINEERING, 2011, 7997
  • [42] Moving target detection in video monitoring system
    Li, Gang
    Zeng, Ruili
    Lin, Ling
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 489 - 489
  • [43] Fast and Robust-Vanishing Point Detection System Using Fast M-Estimation Method and Regional Division for In-Vehicle Camera
    Kondo, Y.
    Numada, M.
    Koshimizu, H.
    THIRTEENTH INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION 2017, 2017, 10338
  • [44] A Straight Line Detection Method based on Chain Codes
    Li, Fan
    Li, Guozhen
    THIRD INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2011), 2011, 8009
  • [45] Development of Potato Yield Monitoring System Using Machine Vision
    Lee Y.-J.
    Shin B.-S.
    Journal of Biosystems Engineering, 2020, 45 (04): : 282 - 290
  • [46] Condition Monitoring of Grinding Process Through Machine Vision system
    Gopan, Vipin
    Ragavanantham, S.
    Sampathkumar, S.
    2012 INTERNATIONAL CONFERENCE ON MACHINE VISION AND IMAGE PROCESSING (MVIP), 2012, : 177 - 180
  • [47] Fast Shot Boundary Detection Based on Separable Moments and Support Vector Machine
    Idan, Zinah N.
    Abdulhussain, Sadiq H.
    Mahmmod, Basheera M.
    Al-Utaibi, Khaled A.
    Al-Hadad, Syed Abdul Rahman
    Sait, Sadiq M.
    IEEE ACCESS, 2021, 9 : 106412 - 106427
  • [48] Jaundice in Newborn Monitoring using Color Detection Method
    Mansor, M. N.
    Yaacob, S.
    Hariharan, M.
    Basah, S. N.
    Ahmad Jamil, S. H. F. S.
    Mohd Khidir, M. L.
    Rejab, M. N.
    Ku Ibrahim, K. M. Y.
    Ahmad Jamil, A. H. F. S.
    Junoh, A. K.
    Saad, S. A.
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 1631 - 1635
  • [49] Preemies Birth Monitoring using Color Detection Method
    Mansor, M. N.
    Yaacob, S.
    Hariharan, M.
    Basah, S. N.
    Ahmad Jamil, S. H. F. S.
    Mohd Khidir, M. L.
    Rejab, M. N.
    Ku Ibrahim, K. M. Y.
    Ahmad Jamil, A. H. F. S.
    Junoh, A. K.
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 1625 - 1630
  • [50] A SEMIAUTOMATIC ANOMALOUS CHANGE DETECTION METHOD FOR MONITORING AIMS
    Artese, G.
    Achilli, V.
    Fabris, M.
    Perrelli, M.
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION VII, 2012, 39 (B7): : 263 - 268