Increasing Profits in Food Waste BiorefineryA Techno-Economic Analysis

被引:79
作者
Bastidas-Oyanedel, Juan-Rodrigo [1 ]
Schmidt, Jens Ejbye [1 ]
机构
[1] Khalifa Univ Sci & Technol, Chem Dept, Masdar Campus,POB 54224, Abu Dhabi, U Arab Emirates
来源
ENERGIES | 2018年 / 11卷 / 06期
关键词
food waste; anaerobic digestion; lactic acid fermentation; dark fermentation; poly-lactic acid; butyric acid; MIXED CULTURE FERMENTATION; PURITY PROPIONATE PRODUCTION; LACTIC-ACID FERMENTATION; VOLATILE FATTY-ACIDS; DARK FERMENTATION; BIOHYDROGEN PRODUCTION; CARBOXYLATE PLATFORM; ECONOMIC-EVALUATION; ACTIVATED CARBON; ORGANIC-ACIDS;
D O I
10.3390/en11061551
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The present manuscript highlights the economic profit increase when combining organic waste anaerobic digestion with other mixed culture anaerobic fermentation technologies, e.g., lactic acid fermentation and dark fermentation. Here we consider the conversion of 50 tonnes/day of food waste into methane, power generation (from CHP of biomethane), lactic acid, polylactic acid, hydrogen, acetic acid and butyric acid. The economic assessment shows that the basic alternative, i.e., anaerobic digestion with methane selling to the grid, generates 19 USD/t_VS (3 USD/t_foodwaste) of profit. The highest profit is obtained by dark fermentation with separation and purification of acetic and butyric acids, i.e., 296 USD/t_VS (47 USD/t_foodwaste). The only alternative that presented losses is the power generation alternative, needing tipping fees and/or subsidy of 176 USD/t_VS (29 USD/t_foodwaste). The rest of the alternatives generate profit. From the return on investment (ROI) and payback time, the best scenario is the production of polylactic acid, with 98% ROI, and 7.8 years payback time. Production of butyric acid ROI and payback time was 74% and 9.1 years.
引用
收藏
页数:14
相关论文
共 74 条
[51]   An overview of the recent developments in polylactide (PLA) research [J].
Nampoothiri, K. Madhavan ;
Nair, Nimisha Rajendran ;
John, Rojan Pappy .
BIORESOURCE TECHNOLOGY, 2010, 101 (22) :8493-8501
[52]  
Nielfa A, 2015, Biotechnol Rep (Amst), V5, P14, DOI 10.1016/j.btre.2014.10.005
[53]   Biohydrogen Production from Biomass and Wastes via Dark Fermentation: A Review [J].
Ntaikou, I. ;
Antonopoulou, G. ;
Lyberatos, G. .
WASTE AND BIOMASS VALORIZATION, 2010, 1 (01) :21-39
[54]   Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: Novel insights on their control [J].
Palomo-Briones, Rodolfo ;
Razo-Flores, Elias ;
Bernet, Nicolas ;
Trably, Eric .
APPLIED ENERGY, 2017, 198 :77-87
[55]   Food waste biomass: a resource for high-value chemicals [J].
Pfaltzgraff, Lucie A. ;
De Bruyn, Mario ;
Cooper, Emma C. ;
Budarin, Vitaly ;
Clark, James H. .
GREEN CHEMISTRY, 2013, 15 (02) :307-314
[56]   Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: A review [J].
Poggi-Varaldo, Hector M. ;
Munoz-Paez, Karla M. ;
Escamilla-Alvarado, Carlos ;
Robledo-Narvaez, Paula N. ;
Teresa Ponce-Noyola, M. ;
Calva-Calva, Graciano ;
Rios-Leal, Elvira ;
Galindez-Mayer, Juvencio ;
Estrada-Vazquez, Carlos ;
Ortega-Clemente, Alfredo ;
Rinderknecht-Seijas, Noemi F. .
WASTE MANAGEMENT & RESEARCH, 2014, 32 (05) :353-365
[57]   Recovery of fumaric acid from fermentation broth using bipolar electrodialysis [J].
Prochaska, Krystyna ;
Wozniak-Budych, Marta J. .
JOURNAL OF MEMBRANE SCIENCE, 2014, 469 :428-435
[58]  
Queirós D, 2017, FERMENTATION-BASEL, V3, DOI 10.3390/fermentation3020020
[59]   Production of lactic acid using a new homofermentative Enterococcus faecalis isolate [J].
Subramanian, Mohan Raj ;
Talluri, Suvarna ;
Christopher, Lew P. .
MICROBIAL BIOTECHNOLOGY, 2015, 8 (02) :221-229
[60]   Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR [J].
Tang, Jialing ;
Wang, Xiaochang ;
Hu, Yisong ;
Zhang, Yongmei ;
Li, Yuyou .
WASTE MANAGEMENT, 2016, 52 :278-285