On the algebraic K-theory of higher categories

被引:41
作者
Barwick, Clark [1 ]
机构
[1] MIT, Dept Math, Bldg 2 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
HIGHER INTERSECTION THEORY; HOMOTOPY-THEORY; DETAILED PROOF; RIEMANN-ROCH; STACKS; MODEL;
D O I
10.1112/jtopol/jtv042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that Waldhausen K-theory, when extended to a very general class of quasicategories, can be described as a Goodwillie differential. In particular, K-theory spaces admit canonical (connective) deloopings, and the K-theory functor enjoys a simple universal property. Using this, we give new, higher categorical proofs of the approximation, additivity, and fibration theorems of Waldhausen in this article. As applications of this technology, we study the algebraic K-theory of associative rings in a wide range of homotopical contexts and of spectral Deligne-Mumford stacks.
引用
收藏
页码:245 / 347
页数:103
相关论文
共 72 条
[1]  
[Anonymous], 1997, Asian Journal of Mathematics, V1, P330, DOI DOI 10.4310/AJM.1997.V1.N2.A9
[2]  
[Anonymous], 1990, Progr. Math.
[3]  
Artin Dirigepar M., 1963, LECT NOTES MATH, V269, P1963
[4]   Algebraic K-theory of topological K-theory [J].
Ausoni, C ;
Rognes, J .
ACTA MATHEMATICA, 2002, 188 (01) :1-39
[5]   Relative categories: Another model for the homotopy theory of homotopy theories [J].
Barwick, C. ;
Kan, D. M. .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2012, 23 (1-2) :42-68
[6]  
Barwick C., 2011, ARXIV11120040
[7]  
Barwick C., 2013, PARTIAL MODEL CATEGO
[8]  
BARWICK C., 2012, ARXIV12125232
[9]  
Barwick C, 2015, DOC MATH, V20, P859
[10]  
Bergner JE, 2009, T AM MATH SOC, V361, P525