Zero width limit of the heat equation on moving thin domains

被引:5
作者
Miura, Tatsu-Hiko [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
Heat equation; moving thin domains; evolving surfaces; NAVIER BOUNDARY-CONDITIONS; FINITE-ELEMENT-METHOD; DIFFUSION EQUATIONS; EVOLVING SURFACES; STOKES EQUATIONS; PARABOLIC PDES; ADVECTION; HYPERSURFACES; INTERFACES; DYNAMICS;
D O I
10.4171/IFB/376
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the behavior of a variational solution to the Neumann type problem of the heat equation on a moving thin domain Omega(epsilon)(t ) that converges to an evolving surface Gamma(t) as the width of Omega(epsilon)(t ) goes to zero. We show that, under suitable assumptions, the average in the normal direction of Gamma(t) of a variational solution to the heat equation converges weakly in a function space on Gamma(t) as the width of Omega(epsilon)(t) goes to zero, and that the limit is a unique variational solution to a limit equation on Gamma(t), which is a new type of linear diffusion equation involving the mean curvature and the normal velocity of Gamma(t) We also estimate the difference between variational solutions to the heat equation on Omega(epsilon)(t) and the limit equation on Gamma(t).
引用
收藏
页码:31 / 77
页数:47
相关论文
共 28 条
[1]   On some linear parabolic PDEs on moving hypersurfaces [J].
Alphonse, Amal ;
Elliott, Charles M. ;
Stinner, Bjoern .
INTERFACES AND FREE BOUNDARIES, 2015, 17 (02) :157-187
[2]   An abstract framework for parabolic PDEs on evolving spaces [J].
Alphonse, Amal ;
Elliott, Charles M. ;
Stinner, Bjoern .
PORTUGALIAE MATHEMATICA, 2015, 72 (01) :1-46
[3]   Transport relations for surface integrals arising in the formulation of balance laws for evolving fluid interfaces [J].
Cermelli, P ;
Fried, E ;
Gurtin, ME .
JOURNAL OF FLUID MECHANICS, 2005, 544 :339-351
[4]  
Dziuk G, 2007, IMA J NUMER ANAL, V27, P262, DOI [10.1093/imanum/dr1023, 10.1093/imanum/drl023]
[5]   Finite element methods for surface PDEs [J].
Dziuk, Gerhard ;
Elliott, Charles M. .
ACTA NUMERICA, 2013, 22 :289-396
[6]  
Dziuk G, 2013, MATH COMPUT, V82, P1
[7]   TIME-PERIODIC SOLUTIONS OF ADVECTION-DIFFUSION EQUATIONS ON MOVING HYPERSURFACES [J].
Elliott, Charles M. ;
Fritz, Hans .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (03) :1693-1718
[8]   Numerical computation of advection and diffusion on evolving diffuse interfaces [J].
Elliott, Charles M. ;
Stinner, Bjoern ;
Styles, Vanessa ;
Welford, Richard .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (03) :786-812
[9]   ANALYSIS OF A DIFFUSE INTERFACE APPROACH TO AN ADVECTION DIFFUSION EQUATION ON A MOVING SURFACE [J].
Elliott, Charles M. ;
Stinner, Bjoern .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2009, 19 (05) :787-802
[10]  
Evans L. C., 2010, Partial Differential Equations, V19, DOI 10.1090/gsm/019