Non-Isothermal Creeping Flows in a Pipeline Network: Existence Results

被引:8
作者
Baranovskii, Evgenii S. [1 ]
Provotorov, Vyacheslav V. [2 ]
Artemov, Mikhail A. [1 ]
Zhabko, Alexey P. [3 ]
机构
[1] Voronezh State Univ, Dept Appl Math Informat & Mech, Voronezh 394018, Russia
[2] Voronezh State Univ, Dept Math, Voronezh 394018, Russia
[3] St Petersburg State Univ, Dept Appl Math & Control Proc, St Petersburg 199034, Russia
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 07期
关键词
pipeline network; non-isothermal flows; temperature-dependent viscosity; pressure boundary conditions; weak solutions; large-date existence; OPTIMAL BOUNDARY CONTROL; NAVIER-STOKES EQUATIONS; GAS-FLOW; ASYMPTOTIC ANALYSIS; RIEMANN PROBLEM; MODEL; SYSTEM;
D O I
10.3390/sym13071300
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper deals with a 3D mathematical model for the non-isothermal steady-state flow of an incompressible fluid with temperature-dependent viscosity in a pipeline network. Using the pressure and heat flux boundary conditions, as well as the conjugation conditions to satisfy the mass balance in interior junctions of the network, we propose the weak formulation of the nonlinear boundary value problem that arises in the framework of this model. The main result of our work is an existence theorem (in the class of weak solutions) for large data. The proof of this theorem is based on a combination of the Galerkin approximation scheme with one result from the field of topological degrees for odd mappings defined on symmetric domains.
引用
收藏
页数:15
相关论文
共 36 条
[1]   Numerical Leak Detection in a Pipeline Network of Complex Structure with Unsteady Flow [J].
Aida-zade, K. R. ;
Ashrafova, E. R. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (12) :1919-1934
[2]  
[Anonymous], 2003, PURE APPL MATH AMSTE
[3]  
Artemov M. A., 2019, Journal of Physics: Conference Series, V1203, DOI 10.1088/1742-6596/1203/1/012094
[4]   Gas flow in pipeline networks [J].
Banda, Mapundi K. ;
Herty, Michael ;
Klar, Axel .
NETWORKS AND HETEROGENEOUS MEDIA, 2006, 1 (01) :41-56
[5]   TOWARD A MATHEMATICAL ANALYSIS FOR DRIFT-FLUX MULTIPHASE FLOW MODELS IN NETWORKS [J].
Banda, Mapundi K. ;
Herty, Michael ;
Ngnotchouye, Jean-Medard T. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 31 (06) :4633-4653
[6]   Optimal boundary control of nonlinear-viscous fluid flows [J].
Baranovskii, E. S. .
SBORNIK MATHEMATICS, 2020, 211 (04) :505-520
[7]   Model of a Nonuniformly Heated Viscous Flow through a Bounded Domain [J].
Baranovskii, E. S. ;
Domnich, A. A. .
DIFFERENTIAL EQUATIONS, 2020, 56 (03) :304-314
[8]   A novel 3D model for non-Newtonian fluid flows in a pipe network [J].
Baranovskii, Evgenii S. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (05) :3827-3839
[9]   Optimal Boundary Control of Non-Isothermal Viscous Fluid Flow [J].
Baranovskii, Evgenii S. ;
Domnich, Anastasia A. ;
Artemov, Mikhail A. .
FLUIDS, 2019, 4 (03)
[10]   THE INTERFACE COUPLING OF THE GAS DYNAMICS EQUATIONS [J].
Chalons, Christophe ;
Raviart, Pierre-Arnaud ;
Seguin, Nicolas .
QUARTERLY OF APPLIED MATHEMATICS, 2008, 66 (04) :659-705