Enhancing the sensing specificity of a MoS2 nanosheet-based FRET aptasensor using a surface blocking strategy

被引:28
作者
Geldert, Alisha [1 ]
Kenry [1 ,2 ,3 ,4 ]
Zhang, Xiao [5 ,6 ]
Zhang, Hua [5 ]
Lim, Chwee Teck [1 ,2 ,3 ,4 ,7 ]
机构
[1] Natl Univ Singapore, Dept Biomed Engn, Singapore 117576, Singapore
[2] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore
[3] Natl Univ Singapore, Ctr Adv Mat 2D, Singapore 117543, Singapore
[4] Natl Univ Singapore, Graphene Res Ctr, Singapore 117543, Singapore
[5] Nanyang Technol Univ, Sch Mat Sci & Engn, Ctr Programmable Mat, Singapore 639798, Singapore
[6] Nanyang Technol Univ, ERI N, Interdisciplinary Grad Sch, Singapore 637553, Singapore
[7] Natl Univ Singapore, Mechanobiol Inst, Singapore 117411, Singapore
基金
新加坡国家研究基金会;
关键词
GRAPHENE OXIDE; LACTATE-DEHYDROGENASE; BINDING MECHANISM; APTAMER; PROTEINS; ANTIBODIES; BIOSENSORS; THROMBIN; TOOLS; ASSAY;
D O I
10.1039/c7an00640c
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Aptamer-based biosensing, which uses short, single-stranded nucleic acid segments to bind to a target, can be advantageous over antibody-based diagnostics due to the ease of synthesis and high stability of aptamers. However, the development of most aptamer-based sensors (aptasensors) is still in its initial stages and many factors affecting their performance have not been studied in great detail. Here, we enhance the sensing specificity of a fluorescence resonance energy transfer (FRET)-based MoS2 nanosheet aptasensor in detecting the malarial biomarker Plasmodium lactate dehydrogenase (pLDH). In this sensing scheme, the presence of target is signaled by an increase in fluorescence when fluores-cently-labeled aptamers bind to pLDH and release from a quenching material. Interestingly, unlike most of the reported literature on aptasensors, we observe that non-target proteins also cause a considerable increase in the detected fluorescence. This may be due to the nonspecific adsorption of proteins onto the fluorescence quencher, leading to the displacement of aptamers from the quencher surface. To reduce this nonspecific association and to enhance the sensor specificity, we propose the application of a surface blocking agent to the quenching material. Importantly, we demonstrate that the sensing specificity of the MoS2 nanosheet-based aptasensor towards target pLDH biomolecules can be significantly enhanced through surface passivation, thus contributing to the development of highly selective and robust point-of-care malaria diagnostics.
引用
收藏
页码:2570 / 2577
页数:8
相关论文
empty
未找到相关数据