High Performance Si Nanowire TFTs With Ultrahigh on/off Current Ratio and Steep Subthreshold Swing

被引:21
作者
Yin, Han [1 ]
Yang, Huafeng [1 ]
Xu, Shun [1 ]
Pan, Danfeng [1 ]
Xu, Jun [1 ]
Chen, Kunji [1 ]
Yu, Linwei [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Collaborat Innovat Ctr Adv Microstruct, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-assembly growth; thin film transistors; silicon nanowires; THIN-FILM TRANSISTORS; SILICON NANOWIRES; P-TYPE; JUNCTION;
D O I
10.1109/LED.2019.2953116
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Seeking high drive current, low leakage and swift switching is critical in developing high performance thin film transistors (TFTs) for portable and flexible displays. In this work, we report on the fabrication of high performance TFTs, based on orderly in-plane silicon nanowire (SiNW) array grown at 350 degrees C, which demonstrate a high ON/OFF current ratio of 5 x 10(8), with a steep subthreshold swing (SS) of 100 mV/dec and a hole mobility of 80 cm(2)/Vs. The high on current of 10 mu A has been obtained under 0.75 V bias for a channel consisting of only 10 parallel SiNWs, with a mean diameter of similar to 66 nm and channel length of 2 mu m. In addition, SiNW inverters are also constructed, operating at a drive voltage of 2 V and achieving a gain above 11. These results highlight the geometric advantage of the SiNW TFTs in constructing a new generation of high performance, low cost and scalable display logics and flexible electronics.
引用
收藏
页码:46 / 49
页数:4
相关论文
共 39 条
[1]   POLYCRYSTALLINE SILICON THIN-FILM TRANSISTORS [J].
BROTHERTON, SD .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1995, 10 (06) :721-738
[2]   High-performance poly-Si TFTs with Pr2O3 gate dielectric [J].
Chang, Chia-Wen ;
Deng, Chih-Kang ;
Huang, Jiun-Jia ;
Chang, Hong-Ren ;
Lei, Tan-Fu .
IEEE ELECTRON DEVICE LETTERS, 2008, 29 (01) :96-98
[3]   Investigation of grain boundary control in the drain junction on laser-crystalized poly-Si thin film transistors [J].
Chen, TF ;
Yeh, CF ;
Lou, JC .
IEEE ELECTRON DEVICE LETTERS, 2003, 24 (07) :457-459
[4]   Incorporation and redistribution of impurities into silicon nanowires during metal-particle-assisted growth [J].
Chen, Wanghua ;
Yu, Linwei ;
Misra, Soumyadeep ;
Fan, Zheng ;
Pareige, Philippe ;
Patriarche, Gilles ;
Bouchoule, Sophie ;
Cabarrocas, Pere Roca I. .
NATURE COMMUNICATIONS, 2014, 5
[5]   Periodically lateral silicon grains fabricated by excimer laser irradiation with a-Si spacers for LTPS TFTs [J].
Cheng, Huang-Chung ;
Tsai, Chun-Chien ;
Lu, Jian-Hao ;
Chen, Hsu-Hsin ;
Chen, Bo-Ting ;
Chang, Ting-Kuo ;
Lin, Ching-Wei .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (01) :J5-J10
[6]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[7]   High performance silicon nanowire field effect transistors [J].
Cui, Y ;
Zhong, ZH ;
Wang, DL ;
Wang, WU ;
Lieber, CM .
NANO LETTERS, 2003, 3 (02) :149-152
[8]   Monolithic Integration of Silicon Nanowire Networks as a Soft Wafer for Highly Stretchable and Transparent Electronics [J].
Dong, Taige ;
Sun, Ying ;
Zhu, Zhimin ;
Wu, Xiaoxiang ;
Wang, Junzhuan ;
Shi, Yi ;
Xu, Jun ;
Chen, Kunji ;
Yu, Linwei .
NANO LETTERS, 2019, 19 (09) :6235-6243
[9]   High-performance thin-film transistors using semiconductor nanowires and nanoribbons [J].
Duan, XF ;
Niu, CM ;
Sahi, V ;
Chen, J ;
Parce, JW ;
Empedocles, S ;
Goldman, JL .
NATURE, 2003, 425 (6955) :274-278
[10]   Inorganic and Organic Solution-Processed Thin Film Devices [J].
Eslamian, Morteza .
NANO-MICRO LETTERS, 2017, 9 (01)