共 50 条
Interface-Engineered Li7La3Zr2O12-Based Garnet Solid Electrolytes with Suppressed Li-Dendrite Formation and Enhanced Electrochemical Performance
被引:78
作者:
Zhang, Zhaoshuai
[1
]
Zhang, Long
[1
]
Liu, Yanyan
[1
]
Wang, Hongqiang
[2
]
Yu, Chuang
[3
]
Zeng, Hong
[4
]
Wang, Li-min
[1
]
Xu, Bo
[1
]
机构:
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
[2] Hebei Univ, Coll Chem & Environm Sci, Baoding 071000, Hebei, Peoples R China
[3] Delft Univ Technol, Dept Radiat Sci & Technol, Mekelweg 15, NL-2629 JB Delft, Netherlands
[4] Adv Technol & Mat Co Ltd, Beijing Key Lab Energy Nanomat, China Iron & Steel Res Inst Grp, Beijing 100081, Peoples R China
来源:
关键词:
batteries;
garnet;
interfaces;
ionic liquids;
solid electrolytes;
IONIC-LIQUID;
RAMAN-SPECTROSCOPY;
LITHIUM;
STATE;
AIR;
CONDUCTIVITY;
MECHANISMS;
CONDUCTORS;
STABILITY;
MICROSTRUCTURE;
D O I:
10.1002/cssc.201801756
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
High grain-boundary resistance, Li-dendrite formation, and electrode/Li interfacial resistance are three major issues facing garnet-based solid electrolytes. Herein, interfacial architecture engineering by incorporating 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMP-TFSI) ionic liquid into a garnet oxide is proposed. The "soft" continuous BMP-TFSI coating with no added Li salt generates a conducting network facilitating Li+ transport and thus changes the ion conduction mode from point contacts to face contacts. The compacted microstructure suppresses Li-dendrite growth and shows good interfacial compatibility and interfacial wettability toward Li metal. Along with a broad electrochemical window larger than 5.5 V and an Li+ transference number that practically reaches unity, LiNi0.8Co0.1Mn0.1O2/Li and LiFePO4/Li solid-state batteries with the hybrid solid electrolyte exhibit superior cycling stability and low polarization, comparable to those with commercial liquid electrolytes, and excellent rate capability that is better than those of Li-salt-based ionic-liquid electrolytes.
引用
收藏
页码:3774 / 3782
页数:9
相关论文
共 50 条