Advances in decomposing complex metabolite mixtures using substructure- and network-based computational metabolomics approaches

被引:94
作者
Beniddir, Mehdi A. [1 ]
Kang, Kyo Bin [2 ]
Genta-Jouve, Gregory [3 ,4 ]
Huber, Florian [5 ]
Rogers, Simon [6 ]
van der Hooft, Justin J. J. [7 ]
机构
[1] Univ Paris Saclay, CNRS, BioCIS, 5 Rue J-B Clement, F-92290 Chatenay Malabry, France
[2] Sookmyung Womens Univ, Res Inst Pharmaceut Sci, Coll Pharm, Seoul 04310, South Korea
[3] Univ Paris, CNRS, UMR 8038, Lab Chim Toxicol Analyt & Cellulaire C TAC,CiTCoM, 4 Ave Observ, F-75006 Paris, France
[4] Univ Guyane, CNRS Guyane, USR 3456, Lab Ecol,Evolut,Interact Syst Amazoniens LEEISA, 275 Route Montabo, Cayenne 97334, French Guiana
[5] Netherlands eSci Ctr, NL-1098 XG Amsterdam, Netherlands
[6] Univ Glasgow, Sch Comp Sci, Glasgow G12 8QQ, Lanark, Scotland
[7] Wageningen Univ, Bioinformat Grp, NL-6708 PB Wageningen, Netherlands
基金
英国生物技术与生命科学研究理事会; 新加坡国家研究基金会;
关键词
PERFORMANCE LIQUID-CHROMATOGRAPHY; NATURAL-PRODUCTS; STRUCTURE ELUCIDATION; MOLECULAR NETWORKING; SECONDARY METABOLITES; DIFFERENTIAL ANALYSIS; DATABASE SEARCH; NMR; IDENTIFICATION; ANNOTATION;
D O I
10.1039/d1np00023c
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Covering: up to the end of 2020 Recently introduced computational metabolome mining tools have started to positively impact the chemical and biological interpretation of untargeted metabolomics analyses. We believe that these current advances make it possible to start decomposing complex metabolite mixtures into substructure and chemical class information, thereby supporting pivotal tasks in metabolomics analysis including metabolite annotation, the comparison of metabolic profiles, and network analyses. In this review, we highlight and explain key tools and emerging strategies covering 2015 up to the end of 2020. The majority of these tools aim at processing and analyzing liquid chromatography coupled to mass spectrometry fragmentation data. We start with defining what substructures are, how they relate to molecular fingerprints, and how recognizing them helps to decompose complex mixtures. We continue with chemical classes that are based on the presence or absence of particular molecular scaffolds and/or functional groups and are thus intrinsically related to substructures. We discuss novel tools to mine substructures, annotate chemical compound classes, and create mass spectral networks from metabolomics data and demonstrate them using two case studies. We also review and speculate about the opportunities that NMR spectroscopy-based metabolome mining of complex metabolite mixtures offers to discover substructures and chemical classes. Finally, we will describe the main benefits and limitations of the current tools and strategies that rely on them, and our vision on how this exciting field can develop toward repository-scale-sized metabolomics analyses. Complementary sources of structural information from genomics analyses and well-curated taxonomic records are also discussed. Many research fields such as natural products discovery, pharmacokinetic and drug metabolism studies, and environmental metabolomics increasingly rely on untargeted metabolomics to gain biochemical and biological insights. The here described technical advances will benefit all those metabolomics disciplines by transforming spectral data into knowledge that can answer biological questions.
引用
收藏
页码:1967 / 1993
页数:28
相关论文
共 147 条
  • [1] Auto-deconvolution and molecular networking of gas chromatography-mass spectrometry data
    Aksenov, Alexander A.
    Laponogov, Ivan
    Zhang, Zheng
    Doran, Sophie L. F.
    Belluomo, Ilaria
    Veselkov, Dennis
    Bittremieux, Wout
    Nothias, Louis Felix
    Nothias-Esposito, Melissa
    Maloney, Katherine N.
    Misra, Biswapriya B.
    Melnik, Alexey V.
    Smirnov, Aleksandr
    Du, Xiuxia
    Jones, Kenneth L., II
    Dorrestein, Kathleen
    Panitchpakdi, Morgan
    Ernst, Madeleine
    van der Hooft, Justin J. J.
    Gonzalez, Mabel
    Carazzone, Chiara
    Amezquita, Adolfo
    Callewaert, Chris
    Morton, James T.
    Quinn, Robert A.
    Bouslimani, Amina
    Orio, Andrea Albarracin
    Petras, Daniel
    Smania, Andrea M.
    Couvillion, Sneha P.
    Burnet, Meagan C.
    Nicora, Carrie D.
    Zink, Erika
    Metz, Thomas O.
    Artaev, Viatcheslav
    Humston-Fulmer, Elizabeth
    Gregor, Rachel
    Meijler, Michael M.
    Mizrahi, Itzhak
    Eyal, Stav
    Anderson, Brooke
    Dutton, Rachel
    Lugan, Raphael
    Le Boulch, Pauline
    Guitton, Yann
    Prevost, Stephanie
    Poirier, Audrey
    Dervilly, Gaud
    Le Bizec, Bruno
    Fait, Aaron
    [J]. NATURE BIOTECHNOLOGY, 2021, 39 (02) : 169 - 173
  • [2] Global chemical analysis of biology by mass spectrometry
    Aksenov, Alexander A.
    da Silva, Ricardo
    Knight, Rob
    Lopes, Norberto P.
    Dorrestein, Pieter C.
    [J]. NATURE REVIEWS CHEMISTRY, 2017, 1 (07)
  • [3] Heterocovariance Based Metabolomics as a Powerful Tool Accelerating Bioactive Natural Product Identification
    Aligiannis, Nektarios
    Halabalaki, Maria
    Chaita, Eliza
    Kouloura, Eirini
    Argyropoulou, Aikaterini
    Benaki, Dimitra
    Kalpoutzakis, Eleftherios
    Angelis, Apostolis
    Stathopoulou, Konstantina
    Antoniou, Stavroula
    Sani, Maria
    Krauth, Verena
    Werz, Oliver
    Schuetz, Birk
    Schaefer, Hartmut
    Spraul, Manfred
    Mikros, Emmanuel
    Skaltsounis, Leandros A.
    [J]. CHEMISTRYSELECT, 2016, 1 (10): : 2531 - 2535
  • [4] Deep metabolome annotation in natural products research: towards a virtuous cycle in metabolite identification
    Allard, Pierre-Marie
    Genta-Jouve, Gregory
    Wolfender, Jean-Luc
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2017, 36 : 40 - 49
  • [5] Integration of Molecular Networking and In-Silico MS/MS Fragmentation for Natural Products Dereplication
    Allard, Pierre-Marie
    Peresse, Tiphaine
    Bisson, Jonathan
    Gindro, Katia
    Marcourt, Laurence
    Van Cuong Pham
    Roussi, Fanny
    Litaudon, Marc
    Wolfender, Jean-Luc
    [J]. ANALYTICAL CHEMISTRY, 2016, 88 (06) : 3317 - 3323
  • [6] CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra
    Allen, Felicity
    Pon, Allison
    Wilson, Michael
    Greiner, Russ
    Wishart, David
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (W1) : W94 - W99
  • [7] [Anonymous], 2004, Kernel methods in computational biology
  • [8] Autumnalamide, a Prenylated Cyclic Peptide from the Cyanobacterium Phormidium autumnale, Acts on SH-SY5Y Cells at the Mitochondrial Level
    Audoin, Coralie
    Andoni Sanchez, Jon
    Genta-Jouve, Gregory
    Alfonso, Amparo
    Rios, Laurent
    Vale, Carmen
    Thomas, Olivier P.
    Botana, Luis M.
    [J]. JOURNAL OF NATURAL PRODUCTS, 2014, 77 (10): : 2196 - 2205
  • [9] Metabolome Consistency: Additional Parazoanthines from the Mediterranean Zoanthid Parazoanthus Axinellae
    Audoin, Coralie
    Cocandeau, Vincent
    Thomas, Olivier P.
    Bruschini, Adrien
    Holderith, Serge
    Genta-Jouve, Gregory
    [J]. METABOLITES, 2014, 4 (02): : 421 - 432
  • [10] Structure and function of the global topsoil microbiome
    Bahram, Mohammad
    Hildebrand, Falk
    Forslund, Sofia K.
    Anderson, Jennifer L.
    Soudzilovskaia, Nadejda A.
    Bodegom, Peter M.
    Bengtsson-Palme, Johan
    Anslan, Sten
    Coelho, Luis Pedro
    Harend, Helery
    Huerta-Cepas, Jaime
    Medema, Marnix H.
    Maltz, Mia R.
    Mundra, Sunil
    Olsson, Pal Axel
    Pent, Mari
    Polme, Sergei
    Sunagawa, Shinichi
    Ryberg, Martin
    Tedersoo, Leho
    Bork, Peer
    [J]. NATURE, 2018, 560 (7717) : 233 - +