COMPACT COMPLETE MINIMAL IMMERSIONS IN R3

被引:9
作者
Alarcon, Antonio [1 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
Complete minimal surfaces; Plateau problem; SURFACES; CONJECTURES; BEHAVIOR;
D O I
10.1090/S0002-9947-10-04741-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we find, for any arbitrary finite topological type, a compact Riemann surface M, an open domain M subset of M with the fixed topological type, and a conformal complete minimal immersion X : M -> R-3 which can be extended to a continuous map X : (M) over bar -> R-3, such that X-vertical bar partial derivative M is an embedding and the Hausdorff dimension of X(partial derivative M) is 1. We also prove that complete minimal surfaces are dense in the space of minimal surfaces spanning a finite set of closed curves in R-3, endowed with the topology of the Hausdorff distance.
引用
收藏
页码:4063 / 4076
页数:14
相关论文
共 16 条
[1]  
Ahlfors LV., 1974, Riemann Surfaces
[2]  
Alarcón A, 2008, GEOM FUNCT ANAL, V18, P1, DOI 10.1007/s00039-008-0650-2
[3]   Limit sets for complete minimal immersions [J].
Alarcón, Antonio ;
Nadirashvili, Nikolai .
MATHEMATISCHE ZEITSCHRIFT, 2008, 258 (01) :107-113
[4]  
CALABI E, 1965, P US JAP SEM DIFF GE, P170
[5]   The Calabi-Yau conjectures for embedded surfaces [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
ANNALS OF MATHEMATICS, 2008, 167 (01) :211-243
[6]   Solution of the problem of plateau [J].
Douglas, Jesse .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1931, 33 (1-4) :263-321
[7]  
Ferrer L., EXISTENCE PROPER MIN
[8]  
López FJ, 2002, J DIFFER GEOM, V60, P155
[9]   On the asymptotic behavior of a complete bounded minimal surface in R3 [J].
Martín, F ;
Morales, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (10) :3985-3994
[10]   Bounded domains which are universal for minimal surfaces [J].
Martin, Francisco ;
Meeks, William H., III ;
Nadirashvili, Nikolai .
AMERICAN JOURNAL OF MATHEMATICS, 2007, 129 (02) :455-461