On 2-maximal subgroups of finite groups

被引:12
作者
Konovalova, Marina N. [1 ]
Monakhov, Victor S. [2 ]
Sokhor, Irina L. [3 ]
机构
[1] Russian Presidential Acad Natl Econ & Publ Adm, Bryansk, Russia
[2] Scorina Gomel State Univ, Dept Math, Gomel, BELARUS
[3] Brest State AS Pushkin Univ, Dept Phys & Math, Kosmonavtov Blvd 21, Brest 224016, BELARUS
关键词
2-Maximal subgroup; finite groups; Hall subgroup; strictly 2-maximal subgroup; MAXIMAL-SUBGROUPS;
D O I
10.1080/00927872.2021.1952213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We distinguish 2-maximal and strictly 2-maximal subgroups of a finite group and give examples of soluble and simple groups in which every 2-maximal subgroup is strictly 2-maximal. Let M be a maximal subgroup of a group G. We prove that every maximal subgroup of M is strictly 2-maximal in G if M is normal in G or if G is p-soluble and vertical bar G : M vertical bar = p. We describe the structure of a finite group in which all 2-maximal subgroups are Hall subgroups. In particular, it has a Sylow tower and all its Sylow subgroups are elementary abelian.
引用
收藏
页码:96 / 103
页数:8
相关论文
共 12 条
[1]  
[Anonymous], 1985, Atlas of Finite Groups
[2]   An atlas of subgroup lattices of finite almost simple groups [J].
Connor, Thomas ;
Leemans, Dimitri .
ARS MATHEMATICA CONTEMPORANEA, 2015, 8 (02) :259-266
[3]  
Dokchitser t, GroupNames
[4]  
Huppert B, 1967, Endliche Gruppen, V134
[5]  
Maslova N. V., 2013, SIB ADV MATH, V23, P196
[6]   OVERGROUPS OF WEAK SECOND MAXIMAL SUBGROUPS [J].
Meng, Hangyang ;
Guo, Xiuyun .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 99 (01) :83-88
[7]   Weak second maximal subgroups in solvable groups [J].
Meng, Hangyang ;
Guo, Xiuyun .
JOURNAL OF ALGEBRA, 2019, 517 :112-118
[8]   Finite π-Solvable Groups Whose Maximal Subgroups Have the Hall Property [J].
Monakhov, V. S. .
MATHEMATICAL NOTES, 2008, 84 (3-4) :363-366
[9]   Finite groups with supersoluble subgroups of given orders [J].
Monakhov, V. S. ;
Tyutyanov, V. N. .
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (04) :155-163
[10]  
Monakhov VS, 2013, RIC MAT, V62, P307, DOI 10.1007/s11587-013-0153-9