On 2-maximal subgroups of finite groups

被引:12
作者
Konovalova, Marina N. [1 ]
Monakhov, Victor S. [2 ]
Sokhor, Irina L. [3 ]
机构
[1] Russian Presidential Acad Natl Econ & Publ Adm, Bryansk, Russia
[2] Scorina Gomel State Univ, Dept Math, Gomel, BELARUS
[3] Brest State AS Pushkin Univ, Dept Phys & Math, Kosmonavtov Blvd 21, Brest 224016, BELARUS
关键词
2-Maximal subgroup; finite groups; Hall subgroup; strictly 2-maximal subgroup; MAXIMAL-SUBGROUPS;
D O I
10.1080/00927872.2021.1952213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We distinguish 2-maximal and strictly 2-maximal subgroups of a finite group and give examples of soluble and simple groups in which every 2-maximal subgroup is strictly 2-maximal. Let M be a maximal subgroup of a group G. We prove that every maximal subgroup of M is strictly 2-maximal in G if M is normal in G or if G is p-soluble and vertical bar G : M vertical bar = p. We describe the structure of a finite group in which all 2-maximal subgroups are Hall subgroups. In particular, it has a Sylow tower and all its Sylow subgroups are elementary abelian.
引用
收藏
页码:96 / 103
页数:8
相关论文
共 12 条
  • [1] An atlas of subgroup lattices of finite almost simple groups
    Connor, Thomas
    Leemans, Dimitri
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2015, 8 (02) : 259 - 266
  • [2] Conway J.H., 1985, Atlas of Finite Groups
  • [3] Dokchitser T, GROUPNAMES
  • [4] Huppert B., 1967, ENDLICHE GRUPPEN
  • [5] Maslova N. V., 2013, SIB ADV MATH, V23, P196
  • [6] OVERGROUPS OF WEAK SECOND MAXIMAL SUBGROUPS
    Meng, Hangyang
    Guo, Xiuyun
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 99 (01) : 83 - 88
  • [7] Weak second maximal subgroups in solvable groups
    Meng, Hangyang
    Guo, Xiuyun
    [J]. JOURNAL OF ALGEBRA, 2019, 517 : 112 - 118
  • [8] Finite π-Solvable Groups Whose Maximal Subgroups Have the Hall Property
    Monakhov, V. S.
    [J]. MATHEMATICAL NOTES, 2008, 84 (3-4) : 363 - 366
  • [9] Finite groups with supersoluble subgroups of given orders
    Monakhov, V. S.
    Tyutyanov, V. N.
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (04): : 155 - 163
  • [10] Monakhov V. S., Vvedenie v teoriyu konechnykh grupp i ikh klassov Introduction to the theory of