Activating the MoS2 Basal Planes for Electrocatalytic Hydrogen Evolution by 2H/1T' Structural Interfaces

被引:41
作者
Zhao, Ni [1 ]
Wang, Lu [1 ]
Zhang, Zixiang [1 ]
Li, Youyong [1 ]
机构
[1] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrogen evolution reaction; interface; MoS2; basal plane; density functional theory; ACTIVE EDGE SITES; METALLIC PHASE-TRANSITION; TOTAL-ENERGY CALCULATIONS; CATALYTIC-ACTIVITY; ATOMIC MECHANISM; MONOLAYER MOS2; EFFICIENCY; NANOSHEETS; EXCHANGE; DEFECTS;
D O I
10.1021/acsami.9b11708
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Exploring highly efficient catalysts for the electrochemical hydrogen evolution reaction (HER) is highly demanded in the sustainable production of hydrogen. MoS2 is recognized as a potential candidate catalyst for HER, but its active site is mainly located at the edges, which is extremely limited. Here, we have investigated the catalytic performance of HER in the MoS2 basal planes during the structural transition from the 2H to the 1T' phase. Different kinds of 2H/1T' structural interfaces are considered, and the adsorbed H free energies (Delta G(H)) on these surfaces were calculated. The active site for H adsorption is on the top of S atoms at the 2H/1T' phase boundary. The zigzag 2H/1T' interfaces exhibit an optimal performance for the Volmer reaction with the Delta G(H) being very close to zero. The Volmer-Heyrovsky reaction is dominantly preferred to the Volmer-Tafel reaction. Our study provides a new picture to boost up the active sites of the basal plane for HER on MoS2, and this electrocatalytic mechanism is also applicable for other transition metal dichalcogenide materials.
引用
收藏
页码:42014 / 42020
页数:7
相关论文
共 55 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   High-Content Metallic 1T Phase in MoS2-Based Electrocatalyst for Efficient Hydrogen Evolution [J].
Cai, Liang ;
Cheng, Weiren ;
Yao, Tao ;
Huang, Yuanyuan ;
Tang, Fumin ;
Liu, Qinghua ;
Liu, Wei ;
Sun, Zhihu ;
Hu, Fengchun ;
Jiang, Yong ;
Yan, Wensheng ;
Wei, Shiqiang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (28) :15071-15077
[3]   SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS [J].
CHADI, DJ .
PHYSICAL REVIEW B, 1977, 16 (04) :1746-1747
[4]   Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping [J].
Deng, Jiao ;
Li, Haobo ;
Xiao, Jianping ;
Tu, Yunchuan ;
Deng, Dehui ;
Yang, Huaixin ;
Tian, Huanfang ;
Li, Jianqi ;
Ren, Pengju ;
Bao, Xinhe .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (05) :1594-1601
[5]   Efficient Electrocatalytic and Photoelectrochemical Hydrogen Generation Using MoS2 and Related Compounds [J].
Ding, Qi ;
Song, Bo ;
Xu, Ping ;
Jin, Song .
CHEM, 2016, 1 (05) :699-726
[6]   Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers [J].
Duerloo, Karel-Alexander N. ;
Li, Yao ;
Reed, Evan J. .
NATURE COMMUNICATIONS, 2014, 5
[7]   Photoluminescence from Chemically Exfoliated MoS2 [J].
Eda, Goki ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Fujita, Takeshi ;
Chen, Mingwei ;
Chhowalla, Manish .
NANO LETTERS, 2011, 11 (12) :5111-5116
[8]   Charge Mediated Semiconducting-to-Metallic Phase Transition in Molybdenum Disulfide Monolayer and Hydrogen Evolution Reaction in New 1T' Phase [J].
Gao, Guoping ;
Jiao, Yan ;
Ma, Fengxian ;
Jiao, Yalong ;
Waclawik, Eric ;
Du, Aijun .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (23) :13124-13128
[9]   Alloy catalysts designed from first principles [J].
Greeley, J ;
Mavrikakis, M .
NATURE MATERIALS, 2004, 3 (11) :810-815
[10]   Computational high-throughput screening of electrocatalytic materials for hydrogen evolution [J].
Greeley, Jeff ;
Jaramillo, Thomas F. ;
Bonde, Jacob ;
Chorkendorff, I. B. ;
Norskov, Jens K. .
NATURE MATERIALS, 2006, 5 (11) :909-913