Existence of analytic solutions for the classical Stefan problem

被引:42
作者
Pruess, Jan
Saal, Juergen
Simonett, Gieri
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Univ Halle Wittenberg, Inst Math, Fak NW 3, D-60120 Halle, Germany
[3] Univ Konstanz, Dept Math & Stat, D-78457 Constance, Germany
关键词
D O I
10.1007/s00208-007-0094-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that under mild regularity assumptions on the initial data the two-phase classical Stefan problem admits a (unique) solution that is analytic in space and time.
引用
收藏
页码:703 / 755
页数:53
相关论文
共 58 条
[1]  
Amann H., 1995, Abstract Linear Theory, Monographs inMathematics, V89, DOI DOI 10.1007/978-3-0348-9221-6
[2]   NONLINEAR ANALYTIC SEMIFLOWS [J].
ANGENENT, SB .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 115 :91-107
[3]  
[Anonymous], 1980, LECT NOTES MATH, DOI DOI 10.1007/BFB0086917
[4]  
[Anonymous], 2003, EVOLUTION EQUATIONS
[5]   Regularity of the free boundary in parabolic phase-transition problems [J].
Athanasopoulos, I ;
Caffarelli, L ;
Salsa, S .
ACTA MATHEMATICA, 1996, 176 (02) :245-282
[6]   Caloric functions in Lipschitz domains and the regularity of solutions to phase transition problems [J].
Athanasopoulos, I ;
Caffarelli, L ;
Salsa, S .
ANNALS OF MATHEMATICS, 1996, 143 (03) :413-434
[7]  
Athanasopoulos I, 1998, COMMUN PUR APPL MATH, V51, P77, DOI 10.1002/(SICI)1097-0312(199801)51:1<77::AID-CPA4>3.0.CO
[8]  
2-C
[9]  
BAZALII BV, 1982, DOKL AKAD NAUK SSSR+, V262, P265
[10]  
BAZALII BV, 1982, T SOVIET MATH DOKL, V25, P46