Finite-horizon min-max control of max-plus-linear systems

被引:9
作者
Necoara, Ion [1 ]
Kerrigan, Eric C.
De Schutter, Bart
van den Boom, Ton J. J.
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, Delft, Netherlands
[2] Univ London Imperial Coll Sci Technol & Med, Dept Elect & Elect Engn, London SW7 2AZ, England
[3] Delft Univ Technol, Marine & Transport Technol Dept, Delft, Netherlands
关键词
discrete event systems; max-plus-linear systems; min-max control; optimal control;
D O I
10.1109/TAC.2007.899071
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, we provide a solution to a class of finite-horizon min-max control problems for uncertain max-plus-linear systems where the uncertain parameters are assumed to lie in a given convex and compact set, and it is required that the closed-loop input and state sequence satisfy a given set of linear inequality constraints for all admissible uncertainty realizations. We provide sufficient conditions such that the value function is guaranteed to be convex and continuous piecewise affine, and such that the optimal control policy is guaranteed to be continuous and piecewise affine on a polyhedral domain.
引用
收藏
页码:1088 / 1093
页数:6
相关论文
共 17 条
  • [1] Baccelli F, 1992, SYNCHRONIZATION LINE
  • [2] Min-max control of constrained uncertain discrete-time linear systems
    Bemporad, A
    Borrelli, F
    Morari, M
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (09) : 1600 - 1606
  • [3] BERTSEKAS D, 2001, DYANMIC PROGRAMMING, V2
  • [4] BERTSEKAS D, 2001, DYANMIC PROGRAMMING, V1
  • [5] RECURSIVE STATE ESTIMATION FOR A SET-MEMBERSHIP DESCRIPTION OF UNCERTAINTY
    BERTSEKAS, DP
    RHODES, IB
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (02) : 117 - +
  • [6] Geometric algorithm for multiparametric linear programming
    Borrelli, F
    Bemporad, A
    Morari, M
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (03) : 515 - 540
  • [7] Model reference control for timed event graphs in dioids
    Cottenceau, B
    Hardouin, L
    Boimond, JL
    Ferrier, JL
    [J]. AUTOMATICA, 2001, 37 (09) : 1451 - 1458
  • [8] Robust dynamic programming for min-max model predictive control of constrained uncertain systems
    Diehl, M
    Björnberg, J
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (12) : 2253 - 2257
  • [9] JONES CN, 2005, THESIS U CAMBRIDGE C
  • [10] Interval analysis and dioid: application to robust controller design for timed event graphs
    Lhommeau, M
    Hardouin, L
    Cottenceau, B
    Jaulin, L
    [J]. AUTOMATICA, 2004, 40 (11) : 1923 - 1930