Suppression of nonadiabatic phases by a non-Markovian environment: Easier observation of Berry phases

被引:6
作者
Whitney, Robert S. [1 ]
机构
[1] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France
来源
PHYSICAL REVIEW A | 2010年 / 81卷 / 03期
关键词
GEOMETRIC PHASE; QUANTUM; DYNAMICS; TRANSPORT; DISSIPATION; COMPUTATION; RELAXATION; SYSTEMS; BLIP;
D O I
10.1103/PhysRevA.81.032108
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a two-level system coupled to a highly non-Markovian environment when the coupling axis rotates with time. The environment may be quantum (for example a bosonic bath or a spin bath) or classical (such as classical noise). We show that an Anderson orthogonality catastrophe suppresses transitions, so that the system's instantaneous eigenstates (parallel and antiparallel to the coupling axis) can adiabatically follow the rotation. These states thereby acquire Berry phases; geometric phases given by the area enclosed by the coupling axis. Unlike in earlier proposals for environment-induced Berry phases, here there is little decoherence, so one does not need a decoherence-free subspace. Indeed we show that this Berry phase should be much easier to observe than a conventional one because it is not masked by either the dynamic phase or the leading nonadiabatic phase. The effects that we discuss should be observable in any qubit device where one can drive three parameters in the Hamiltonian with strong man-made noise.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Magic behaviors in non-Markovian environment
    Huang, Zhiming
    Zou, Xiangfu
    Rong, Zhenbang
    He, Zhimin
    Zhao, Lianghui
    Ye, Yiyong
    Situ, Haozhen
    MODERN PHYSICS LETTERS A, 2024, 39 (05)
  • [2] Fermionic-mode entanglement in non-Markovian environment
    Cheng, Jiong
    Han, Yan
    An, Qing-zhi
    Zhou, Ling
    ANNALS OF PHYSICS, 2015, 354 : 590 - 603
  • [3] Observation of rogue events in non-Markovian light
    Frostig, Hadas
    Vidal, Itamar
    Fischer, Robert
    Sheinfux, Hanan Herzig
    Silberberg, Yaron
    OPTICA, 2020, 7 (08): : 864 - 871
  • [4] Coupled harmonic oscillators and their application in the dynamics of entanglement and the nonadiabatic Berry phases
    Abidi, A.
    Trabelsi, A.
    Krichene, S.
    CANADIAN JOURNAL OF PHYSICS, 2021, 99 (10) : 898 - 906
  • [5] Observation of non-Markovian micromechanical Brownian motion
    Groblacher, S.
    Trubarov, A.
    Prigge, N.
    Cole, G. D.
    Aspelmeyer, M.
    Eisert, J.
    NATURE COMMUNICATIONS, 2015, 6
  • [6] Decoherence suppression via non-Markovian coherent feedback control
    Xue, Shi-Bei
    Wu, Re-Bing
    Zhang, Wei-Min
    Zhang, Jing
    Li, Chun-Wen
    Tarn, Tzyh-Jong
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [7] Tripartite entanglement dynamics in the presence of Markovian or non-Markovian environment
    Park, DaeKil
    QUANTUM INFORMATION PROCESSING, 2016, 15 (08) : 3189 - 3208
  • [8] Entanglement and decoherence of coupled superconductor qubits in a non-Markovian environment
    Ji Ying-Hua
    Hu Ju-Ju
    CHINESE PHYSICS B, 2010, 19 (06)
  • [9] Observation of Non-Markovian Evolution of Einstein-Podolsky-Rosen Steering
    Wang, Yan
    Hao, Ze-Yan
    Li, Jia-Kun
    Liu, Zheng-Hao
    Sun, Kai
    Xu, Jin-Shi
    Li, Chuan-Feng
    Guo, Guang-Can
    PHYSICAL REVIEW LETTERS, 2023, 130 (20)
  • [10] Decoherence of Josephson charge qubit in non-Markovian environment
    Qiu, Qing-Qian
    Zhou, Xing-Fei
    Liang, Xian-Ting
    PHYSICA B-CONDENSED MATTER, 2016, 489 : 12 - 16