A CONNECTION BETWEEN SUMSETS AND COVERING CODES OF A MODULE

被引:0
作者
dos Santos, Otavio J. N. T. N. [1 ]
Monte Carmelo, Emerson L. [2 ]
机构
[1] Univ Estadual Mato Grosso Sul, Unidade Ponta Pora, Rua Itibere Vieira S-N, BR-79907414 Ponta Pora, MS, Brazil
[2] Univ Estadual Maringa, Dept Matemat, Av Colombo,5790 Campus Univ, BR-87020900 Maringa, PR, Brazil
关键词
Sumset; arithmetic progression; covering code; code over a ring; matrix method; bound on code; ROOK DOMAINS;
D O I
10.3934/amc.2018035
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work we focus on a connection between sumsets and covering codes in an arbitrary finite module. For this purpose, bounds on a new problem on sumsets are obtained from well-known results of additive number theory, namely, the Cauchy-Davenport theorem, the Vosper theorem and a theorem due to Hamidoune-Rodseth. As an application, the approach is able to extend the Blokhuis-Lam theorems and a construction of covering codes by Honkala to an arbitrary module.
引用
收藏
页码:595 / 605
页数:11
相关论文
共 18 条
[1]  
[Anonymous], 1996, INVERSE PROBLEMS GEO
[2]   MORE COVERINGS BY ROOK DOMAINS [J].
BLOKHUIS, A ;
LAM, CWH .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1984, 36 (02) :240-244
[3]   ON COVERING AND COLORING PROBLEMS FOR ROOK DOMAINS [J].
CARNIELLI, WA .
DISCRETE MATHEMATICS, 1985, 57 (1-2) :9-16
[4]  
CARNIELLI WA, 1990, STUD APPL MATH, V82, P59
[5]  
Cauchy Augustin-Louis, 2009, OEUVRES COMPLETES, V1
[6]  
Cohen GD., 1997, Covering Codes
[7]  
Davenport H., 1935, J LONDON MATH SOC, V10, P30
[8]   Invariant sets under linear operator and covering codes over modules [J].
dos Santos, O. J. N. T. N. ;
Carmelo, E. L. Monte .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 444 :42-52
[9]  
Erdo Paul, 1977, LECT NOTES MATH, V626, P43, DOI DOI 10.1007/BFB0063064
[10]   An inverse theorem mod p [J].
Hamidoune, YO ;
Rodseth, OJ .
ACTA ARITHMETICA, 2000, 92 (03) :251-262