MAP and LogMAP decoding algorithms for linear block codes using a code structure

被引:0
作者
Kaji, Y [1 ]
Shibuya, R
Fujiwara, T
Kasami, T
Lin, S
机构
[1] Nara Inst Sci & Technol, Grad Sch Informat Sci, Nara 6300101, Japan
[2] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka 5608531, Japan
[3] Hiroshima City Univ, Fac Informat Sci, Hiroshima 7313194, Japan
[4] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
关键词
MAP decoding; BCJR algorithm; turbo codes; trellis diagram; linear block codes;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
New algorithms for the MAP (also known as the APP) decoding and the MAX-LogMAP decoding of linear block codes are presented. The algorithms are devised based on the structural properties of linear block codes, and succeeds in reducing the decoding complexity without degrading the error performance. The proposed algorithms are suitable for the parallel and pipeline processing which improves the throughput of the decoder. To evaluate the decoding complexity of the proposed algorithms, simulation results for some well-known codes are presented. The results show that the algorithms are especially efficient than the conventional BCJR-based algorithms for codes whose rate are relatively low.
引用
收藏
页码:1884 / 1890
页数:7
相关论文
共 10 条
[1]  
[Anonymous], 1993, PROC IEEE INT C COMM, DOI 10.1109/ICC.1993.397441
[2]   OPTIMAL DECODING OF LINEAR CODES FOR MINIMIZING SYMBOL ERROR RATE [J].
BAHL, LR ;
COCKE, J ;
JELINEK, F ;
RAVIV, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (02) :284-287
[3]  
BAHL LR, 1972, 1972 INT S IT AS CA
[4]  
Franz V., 1997, Proceeding. 1997 IEEE International Symposium on Information Theory (Cat. No.97CH36074), DOI 10.1109/ISIT.1997.613145
[5]   A trellis-based recursive maximum-likelihood decoding algorithm for binary linear block codes [J].
Fujiwara, T ;
Yamamoto, H ;
Kasami, T ;
Lin, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (02) :714-729
[6]  
FUJIWARA T, 1995, 33 ALL C COMM CONTR, P700
[7]   Iterative decoding of binary block and convolutional codes [J].
Hagenauer, J ;
Offer, E ;
Papke, L .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (02) :429-445
[8]  
KAJI Y, 1997, IT9679 IEICE
[9]  
MCADAM PL, 1972, 1972 INT S IT AS CA
[10]  
SHIBUYA R, 1998, P 1998 INT S INF THE, P639