Highly Efficient Recovery of Propane by Mixed-Matrix Membrane via Embedding Functionalized Graphene Oxide Nanosheets into Polydimethylsiloxane

被引:30
作者
Shen, Guoshun [1 ]
Zhao, Jing [1 ]
Guan, Kecheng [1 ]
Shen, Jie [1 ]
Jin, Wanqin [1 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, Jiangsu Natl Synerget Innovat Ctr Adv Mat, State Key Lab Mat Oriented Chem Engn, 5 Xinmofan Rd, Nanjing 210009, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene oxide; functionalization; mixed matrix membrane; gas separation; propane recovery; GAS SEPARATION; PERMEATION; NANOCOMPOSITES; TRANSPORT; SILOXANE); SORPTION; SURFACE; FILLERS; PURE;
D O I
10.1002/aic.15720
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
To construct rapid C3H8 transport pathways in polymer matrix, alkyl chain-functionalized graphene oxide (GO) was prepared via grafting octadecylamine (ODA) molecules and then embedded into polydimethylsiloxane (PDMS) matrix to obtain high-efficiency mixed matrix membranes (MMMs). The incorporation of alkyl chains contributes to lowering the surface energy of GO nanosheets and providing higher affinity with PDMS matrix. Additionally, the alkyl chains on the surface of ODA-functionalized GO nanosheets (ODA-GO) are in favor of C3H8 adsorption, thus conferring continuous and specific transport pathways for C3H8. The optimized membrane with ODA-GO loading of 0.3 wt% exhibits the C3H8 permeance of 1897 GPU and the C3H8/N-2 ideal selectivity of 67, which are 50.2 and 72.5% higher than those of bare PDMS membrane, respectively. The simultaneous enhancement of C3H8 permeance and C3H8/N-2 ideal selectivity indicates that ODA-GO is an effective filler applied in MMMs for C3H8 recovery. (C) 2017 American Institute of Chemical Engineers AIChE
引用
收藏
页码:3501 / 3510
页数:10
相关论文
共 33 条
[1]   Enhanced Gas Permeation through Graphene Nanocomposites [J].
Berean, Kyle J. ;
Ou, Jian Zhen ;
Nour, Majid ;
Field, Matthew R. ;
Alsaif, Manal M. Y. A. ;
Wang, Yichao ;
Ramanathan, Rajesh ;
Bansal, Vipul ;
Kentish, Sandra ;
Doherty, Cara M. ;
Hill, Anita J. ;
McSweeney, Chris ;
Kaner, Richard B. ;
Kalantar-zadeh, Kourosh .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (24) :13700-13712
[2]   Membrane Gas Separation: A Review/State of the Art [J].
Bernardo, P. ;
Drioli, E. ;
Golemme, G. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (10) :4638-4663
[3]   Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation [J].
Chung, Tai-Shung ;
Jiang, Lan Ying ;
Li, Yi ;
Kulprathipanja, Santi .
PROGRESS IN POLYMER SCIENCE, 2007, 32 (04) :483-507
[4]   ZIF-8/PDMS mixed matrix membranes for propane/nitrogen mixture separation: Experimental result and permeation model validation [J].
Fang, Manquan ;
Wu, Chilung ;
Yang, Zhengjin ;
Wang, Tao ;
Xia, Yang ;
Li, Jiding .
JOURNAL OF MEMBRANE SCIENCE, 2015, 474 :103-113
[5]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[6]  
Ghosal K., 1994, POLYM ADVAN TECHNOL, V5, P673
[7]   Aldehyde functionalized graphene oxide frameworks as robust membrane materials for pervaporative alcohol dehydration [J].
Hua, Dan ;
Rai, Rajesh Kumar ;
Zhang, Yu ;
Chung, Tai-Shung .
CHEMICAL ENGINEERING SCIENCE, 2017, 161 :341-349
[8]   Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors [J].
Huang, Kang ;
Dong, Ziye ;
Li, Qianqian ;
Jin, Wanqin .
CHEMICAL COMMUNICATIONS, 2013, 49 (87) :10326-10328
[9]   Graphene/Polymer Nanocomposites [J].
Kim, Hyunwoo ;
Abdala, Ahmed A. ;
Macosko, Christopher W. .
MACROMOLECULES, 2010, 43 (16) :6515-6530
[10]   Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation [J].
Kim, Sangil ;
Pechar, Todd W. ;
Marand, Eva .
DESALINATION, 2006, 192 (1-3) :330-339