An alternative definition for fuzzy interval orders

被引:7
作者
Bufardi, A [1 ]
机构
[1] Ecole Polytech Fed Lausanne, STI, IPR, LICP, CH-1015 Lausanne, Switzerland
关键词
interval order; strict interval order; Ferrers property; strong De Morgan triplet; min-max De Morgan triplet;
D O I
10.1016/S0165-0114(02)00135-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The class of interval orders is one of the most studied classes of preference structures without incomparability in the theory of classical preference modelling. In this paper, we propose a generalization of the classical definition of interval order and strict interval order. We focus our attention on two important classes of interval orders and strict interval orders which are, respectively, defined by means of a strong De Morgan triplet and a min-max De Morgan triplet. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:249 / 259
页数:11
相关论文
共 50 条
  • [21] Dimension of Restricted Classes of Interval Orders
    Mitchel T. Keller
    Ann N. Trenk
    Stephen J. Young
    Graphs and Combinatorics, 2022, 38
  • [22] Operational Semantics, Interval Orders and Sequences of Antichains
    Janicki, Ryszard
    Koutny, Maciej
    FUNDAMENTA INFORMATICAE, 2019, 169 (1-2) : 31 - 55
  • [23] Decomposing labeled interval orders as pairs of permutations
    Claesson, Anders
    Hannah, Stuart A.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04)
  • [24] Inductive Characterizations of Finite Interval Orders and Semiorders
    Leblet, Jimmy
    Rampon, Jean-Xavier
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2009, 26 (03): : 277 - 281
  • [25] A characterization of interval orders with semiorder dimension two
    Apke, Alexander
    Schrader, Rainer
    DISCRETE APPLIED MATHEMATICS, 2021, 297 : 142 - 150
  • [26] On the maximization of menu-dependent interval orders
    Juan P. Aguilera
    Levent Ülkü
    Social Choice and Welfare, 2017, 48 : 357 - 366
  • [27] Inductive Characterizations of Finite Interval Orders and Semiorders
    Jimmy Leblet
    Jean-Xavier Rampon
    Order, 2009, 26 : 277 - 281
  • [28] CONTINUOUS REPRESENTATION OF INTERVAL ORDERS BY MEANS OF DECREASING SCALES
    Bosi, Gianni
    MATEMATICKI VESNIK, 2006, 58 (3-4): : 111 - 117
  • [29] A loopless algorithm for generation of basic minimal interval orders
    LaFollette, PS
    Korsh, JF
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2000, 17 (03): : 271 - 285
  • [30] A refined analysis on the jump number problem of interval orders
    Yuan, Chen
    Kan, Haibin
    INFORMATION PROCESSING LETTERS, 2015, 115 (11) : 797 - 800