An alternative definition for fuzzy interval orders

被引:7
作者
Bufardi, A [1 ]
机构
[1] Ecole Polytech Fed Lausanne, STI, IPR, LICP, CH-1015 Lausanne, Switzerland
关键词
interval order; strict interval order; Ferrers property; strong De Morgan triplet; min-max De Morgan triplet;
D O I
10.1016/S0165-0114(02)00135-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The class of interval orders is one of the most studied classes of preference structures without incomparability in the theory of classical preference modelling. In this paper, we propose a generalization of the classical definition of interval order and strict interval order. We focus our attention on two important classes of interval orders and strict interval orders which are, respectively, defined by means of a strong De Morgan triplet and a min-max De Morgan triplet. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:249 / 259
页数:11
相关论文
共 50 条
  • [11] Counting split interval orders
    Reeds, JA
    Fishburn, PC
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2001, 18 (02): : 129 - 135
  • [12] THE NICHE GRAPHS OF INTERVAL ORDERS
    Park, Jeongmi
    Sano, Yoshio
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (02) : 353 - 359
  • [13] Counting Split Interval Orders
    James A. Reeds
    Peter C. Fishburn
    Order, 2001, 18 : 129 - 135
  • [14] THE COMMUNICATION COMPLEXITY OF INTERVAL ORDERS
    FAIGLE, U
    SCHRADER, R
    TURAN, G
    DISCRETE APPLIED MATHEMATICS, 1992, 40 (01) : 19 - 28
  • [15] Critically prime interval orders
    Zaguia, Imed
    DISCRETE MATHEMATICS, 2008, 308 (23) : 5727 - 5734
  • [16] Dimension of Restricted Classes of Interval Orders
    Keller, Mitchel T.
    Trenk, Ann N.
    Young, Stephen J.
    GRAPHS AND COMBINATORICS, 2022, 38 (05)
  • [17] Interval orders, semiorders and ordered groups
    Pouzet, Maurice
    Zaguia, Imed
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2019, 89 : 51 - 66
  • [18] On the Ferrers property of valued interval orders
    Diaz, Susana
    De Baets, Bernard
    Montes, Susana
    TOP, 2011, 19 (02) : 421 - 447
  • [19] TACKLING THE JUMP NUMBER OF INTERVAL ORDERS
    MITAS, J
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1991, 8 (02): : 115 - 132
  • [20] On the Ferrers property of valued interval orders
    Susana Díaz
    Bernard De Baets
    Susana Montes
    TOP, 2011, 19 : 421 - 447