An alternative definition for fuzzy interval orders

被引:7
作者
Bufardi, A [1 ]
机构
[1] Ecole Polytech Fed Lausanne, STI, IPR, LICP, CH-1015 Lausanne, Switzerland
关键词
interval order; strict interval order; Ferrers property; strong De Morgan triplet; min-max De Morgan triplet;
D O I
10.1016/S0165-0114(02)00135-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The class of interval orders is one of the most studied classes of preference structures without incomparability in the theory of classical preference modelling. In this paper, we propose a generalization of the classical definition of interval order and strict interval order. We focus our attention on two important classes of interval orders and strict interval orders which are, respectively, defined by means of a strong De Morgan triplet and a min-max De Morgan triplet. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:249 / 259
页数:11
相关论文
共 50 条
  • [1] Towards fuzzy interval orders
    Diaz, S.
    Montes, S.
    De Baets, B.
    COMPUTATIONAL INTELLIGENCE IN DECISION AND CONTROL, 2008, 1 : 211 - 216
  • [2] Weak and strong fuzzy interval orders
    DeBaets, B
    VandeWalle, B
    FUZZY SETS AND SYSTEMS, 1996, 79 (02) : 213 - 225
  • [3] Comparison of two versions of the Ferrers property of fuzzy interval orders
    Diaz, Susana
    De Baets, Bernard
    Montes, Susana
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 780 - 785
  • [4] Interval orders with two interval lengths
    Boyadzhiyska, Simona
    Isaak, Garth
    Trenk, Ann N.
    DISCRETE APPLIED MATHEMATICS, 2019, 267 : 52 - 63
  • [5] Shellability of interval orders
    Billera, LJ
    Myers, AN
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1998, 15 (02): : 113 - 117
  • [6] Interval orders and dimension
    Kierstead, HA
    Trotter, WT
    DISCRETE MATHEMATICS, 2000, 213 (1-3) : 179 - 188
  • [7] Homothetic interval orders
    Lemaire, Bertrand
    Le Menestrel, Marc
    DISCRETE MATHEMATICS, 2006, 306 (15) : 1669 - 1683
  • [8] Basic interval orders
    Myers, A
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1999, 16 (03): : 261 - 275
  • [9] Shellability of Interval Orders
    Louis J. Billera
    Amy N. Myers
    Order, 1998, 15 : 113 - 117
  • [10] Basic Interval Orders
    Amy Myers
    Order, 1999, 16 : 261 - 275