Registration of Multiple Shapes using Constrained Optimal Control

被引:7
作者
Arguillere, Sylvain [1 ,2 ]
Trelat, Emmanuel [3 ,4 ]
Trouve, Alain [5 ]
Younes, Laurent [1 ,2 ]
机构
[1] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
[3] Univ Paris 06, Sorbonne Univ, CNRS, UMR 7598,Lab Jacques Louis Lions, F-75005 Paris, France
[4] Inst Univ France, F-75005 Paris, France
[5] Ecole Normale Super, CMLA, F-94235 Cachan, France
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2016年 / 9卷 / 01期
基金
美国国家科学基金会;
关键词
shape analysis; optimal control; deformations; groups of diffeomorphisms; DIFFEOMORPHIC IMAGE REGISTRATION; FRAMEWORK; FIELDS; FLOWS;
D O I
10.1137/15M1006726
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lagrangian particle formulations of the large deformation diffeomorphic metric mapping algorithm only allow for the study of a single shape. In this paper, we introduce and discuss both a theoretical and practical setting for the simultaneous study of multiple shapes that are either stitched to one another or slide along a submanifold. The method is described within the optimal control formalism, and optimality conditions are given, together with the equations that are needed to implement augmented Lagrangian methods. Experimental results are provided for stitched and sliding surfaces.
引用
收藏
页码:344 / 385
页数:42
相关论文
共 81 条
  • [31] Conformal surface parameterization for texture mapping
    Haker, S
    Angenent, S
    Tannenbaum, A
    Kikinis, R
    Sapiro, G
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2000, 6 (02) : 181 - 189
  • [32] Optimal mass transport for registration and warping
    Haker, S
    Zhu, L
    Tannenbaum, A
    Angenent, S
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 60 (03) : 225 - 240
  • [33] Hurdal M., 2000, NEUROIMAGE, V11, P467
  • [34] Cortical cartography using the discrete conformal approach of circle packings
    Hurdal, MK
    Stephenson, K
    [J]. NEUROIMAGE, 2004, 23 : S119 - S128
  • [35] Hurdal MK, 1999, LECT NOTES COMPUT SC, V1679, P279
  • [36] Discrete conformal methods for cortical brain flattening
    Hurdal, Monica K.
    Stephenson, Ken
    [J]. NEUROIMAGE, 2009, 45 (01) : S86 - S98
  • [37] Optimal global conformal surface parameterization
    Jin, M
    Wang, YL
    Yau, ST
    Gu, XF
    [J]. IEEE VISUALIZATION 2004, PROCEEEDINGS, 2004, : 267 - 274
  • [38] Landmark matching via large deformation diffeomorphisms
    Joshi, SC
    Miller, MI
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (08) : 1357 - 1370
  • [39] Conformal Wasserstein distances: Comparing surfaces in polynomial time
    Lipman, Y.
    Daubechies, I.
    [J]. ADVANCES IN MATHEMATICS, 2011, 227 (03) : 1047 - 1077
  • [40] Lipman Y., 2009, ARXIV09123488