Registration of Multiple Shapes using Constrained Optimal Control

被引:7
作者
Arguillere, Sylvain [1 ,2 ]
Trelat, Emmanuel [3 ,4 ]
Trouve, Alain [5 ]
Younes, Laurent [1 ,2 ]
机构
[1] Johns Hopkins Univ, Ctr Imaging Sci, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
[3] Univ Paris 06, Sorbonne Univ, CNRS, UMR 7598,Lab Jacques Louis Lions, F-75005 Paris, France
[4] Inst Univ France, F-75005 Paris, France
[5] Ecole Normale Super, CMLA, F-94235 Cachan, France
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2016年 / 9卷 / 01期
基金
美国国家科学基金会;
关键词
shape analysis; optimal control; deformations; groups of diffeomorphisms; DIFFEOMORPHIC IMAGE REGISTRATION; FRAMEWORK; FIELDS; FLOWS;
D O I
10.1137/15M1006726
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lagrangian particle formulations of the large deformation diffeomorphic metric mapping algorithm only allow for the study of a single shape. In this paper, we introduce and discuss both a theoretical and practical setting for the simultaneous study of multiple shapes that are either stitched to one another or slide along a submanifold. The method is described within the optimal control formalism, and optimality conditions are given, together with the equations that are needed to implement augmented Lagrangian methods. Experimental results are provided for stitched and sliding surfaces.
引用
收藏
页码:344 / 385
页数:42
相关论文
共 81 条
  • [1] [Anonymous], 1993, General Pattern Theory: A Mathematical Study of RegularStructures
  • [2] CARDIAC MOTION ANALYSIS IN ISCHEMIC AND NON-ISCHEMIC CARDIOMYOPATHY USING PARALLEL TRANSPORT
    Ardekani, Siamak
    Weiss, Robert G.
    Lardo, Albert C.
    George, Richard T.
    Lima, Joao A. C.
    Wu, Katherine C.
    Miller, Michael I.
    Winslow, Raimond L.
    Younes, Laurent
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 899 - +
  • [3] Shape deformation analysis from the optimal control viewpoint
    Arguillere, Sylvain
    Trelat, Emmanuel
    Trouve, Alain
    Younes, Laurent
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (01): : 139 - 178
  • [4] A fast diffeomorphic image registration algorithm
    Ashburner, John
    [J]. NEUROIMAGE, 2007, 38 (01) : 95 - 113
  • [5] Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation
    Ashburner, John
    Friston, Karl J.
    [J]. NEUROIMAGE, 2011, 55 (03) : 954 - 967
  • [6] Lagrangian frame diffeomorphic image registration: Morphometric comparison of human and chimpanzee cortex
    Avants, Brian B.
    Schoenemann, P. Thomas
    Gee, James C.
    [J]. MEDICAL IMAGE ANALYSIS, 2006, 10 (03) : 397 - 412
  • [7] Azencott R., 2010, Computational Methods in Applied Mathematics, V10, P235
  • [8] A COMPUTERIZED SYSTEM FOR THE ELASTIC MATCHING OF DEFORMED RADIOGRAPHIC IMAGES TO IDEALIZED ATLAS IMAGES
    BAJCSY, R
    LIEBERSON, R
    REIVICH, M
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1983, 7 (04) : 618 - 625
  • [9] Computing large deformation metric mappings via geodesic flows of diffeomorphisms
    Beg, MF
    Miller, MI
    Trouvé, A
    Younes, L
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2005, 61 (02) : 139 - 157
  • [10] The Momentum Map Representation of Images
    Bruveris, M.
    Gay-Balmaz, F.
    Holm, D. D.
    Ratiu, T. S.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2011, 21 (01) : 115 - 150