Corrosion of 304 stainless steel exposed to nitric acid-chloride environments

被引:90
作者
Kolman, DG [1 ]
Ford, DK [1 ]
Butt, DP [1 ]
Nelson, TO [1 ]
机构
[1] Univ Calif Los Alamos Natl Lab, Mat Corros & Environm Effects Lab, Los Alamos, NM 87545 USA
关键词
stainless steel; weight loss; acid corrosion;
D O I
10.1016/S0010-938X(97)00092-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In an effort to examine the combined effect of HNO3, NaCl, and temperature on the general corrosion behavior of 304 stainless steel (SS), electrochemical studies were performed. The corrosion response of 304 SS was bifurcated: materials were either continuously passive following immersion or spontaneously passivated following a period of active dissolution. Active dissolution was autocatalytic, with the corrosion rate increasing exponentially with time and potential. The period of active corrosion terminated following spontaneous passivation, resulting in a corrosion rate decrease of up to five orders of magnitude. The length of the active corrosion period was strongly dependent on the solution volume-to-surface area ratio. This finding, coupled with other results, suggested that spontaneous passivation arises solely from solution chemistry as opposed to changes in surface oxide composition. Increasing NaCl concentrations promoted pitting, active dissolution upon initial immersion, a smaller potential range for passivity, longer active corrosion periods, larger active anodic charge densities preceding spontaneous passivation, and larger corrosion current and peak current densities. In contrast, intermediate HNO3 concentrations promoted active dissolution, with continuous passivity noted at HNO3 concentration extremes. During active corrosion, increased HNO3 concentrations increased the anodic charge density, corrosion current density, and peak current density. The time required for spontaneous passivation was greatest at intermediate HNO3 concentrations. Susceptibility to pitting was also greatest at intermediate HNO, concentrations: the pit initiation and repassivation potentials decreased with increasing HNO3 concentration until the HNO3 concentration exceeded a critical concentration beyond which susceptibility to pitting was entirely eliminated. Increasing solution temperature increased the susceptibility to both pitting and active dissolution.
引用
收藏
页码:2067 / 2093
页数:27
相关论文
共 51 条
[1]  
Angappan S, 1996, B ELECTROCHEM, V12, P48
[2]  
[Anonymous], CORROSION METALS ALL
[3]  
*ASTM, 1989, ANN BOOK ASTM STAND, P56
[4]   THE SURFACE-COMPOSITION AND CORROSION BEHAVIOR OF AISI-304 STAINLESS-STEEL AFTER IMMERSION IN 20-PERCENT HNO3 SOLUTION [J].
BARBOSA, MA ;
GARRIDO, A ;
CAMPILHO, A ;
SUTHERLAND, I .
CORROSION SCIENCE, 1991, 32 (02) :179-184
[5]   FORMATION OF SALT FILMS DURING PASSIVATION OF IRON [J].
BECK, TR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1982, 129 (11) :2412-2418
[6]  
CHRISTENSEN EL, 1969, LA3542 LOS AL NAT LA
[7]  
CIRISCIOLI P, 1981, ASTM STP, V728, P138
[8]   CHAOS DURING THE GROWTH OF AN ARTIFICIAL PIT [J].
CORCORAN, SG ;
SIERADZKI, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (06) :1568-1573
[9]  
Davison R.M., 1992, ASM HDB, V13, P547
[10]  
DEGNAN TF, 1992, ASM HDB, V13, P1134