CORONAL HEATING DRIVEN BY A MAGNETIC GRADIENT PUMPING MECHANISM IN SOLAR PLASMAS

被引:10
|
作者
Tan, Baolin [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Key Lab Solar Act, Beijing 100012, Peoples R China
关键词
plasmas; stars: coronae; Sun: atmosphere; Sun: chromosphere; Sun: corona; ALFVEN WAVES; QUIET SUN; BRIGHT POINTS; FIELDS; CHROMOSPHERE; EMISSION; CHANNELS; TOKAMAK; MODEL; LOOPS;
D O I
10.1088/0004-637X/795/2/140
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The heating of the solar corona is a longstanding mystery in astrophysics. Considering that the solar magnetic field is spatially inhomogeneous with a considerable magnetic gradient from the solar surface to the corona, this work proposes a magnetic gradient pumping (MGP) mechanism to try to explain the formation of hot plasma upflows, such as hot type II spicules and hot plasma ejections. In the MGP mechanism, the magnetic gradient may drive the energetic particles to move upward from the underlying solar atmosphere and form hot upflows. These upflow energetic particles are deposited in the corona, causing it to become very hot. Rough estimations indicate that the solar corona can be heated to above 1 million degrees, and the upflow velocity is about 40 km s(-1) in the chromosphere and about 130 km s(-1) in the corona. The solar magnetic flux tubes act as pumpers to extract energetic particles from the underlying thermal photosphere, convey them, and deposit them in the corona. The deposit of these energetic particles causes the corona to become hot, and the escape of such particles from the photosphere leaves it a bit cold. This mechanism can present a natural explanation to the mystery of solar coronal heating.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A flux-tube tectonics model for solar coronal heating driven by the magnetic carpet
    Priest, ER
    Heyvaerts, JF
    Title, AM
    ASTROPHYSICAL JOURNAL, 2002, 576 (01) : 533 - 551
  • [2] Solar coronal heating from small-scale magnetic braids
    Chitta, L. P.
    Peter, H.
    Parenti, S.
    Berghmans, D.
    Auchere, F.
    Solanki, S. K.
    Aznar Cuadrado, R.
    Schuehle, U.
    Teriaca, L.
    Mandal, S.
    Barczynski, K.
    Buchlin, E.
    Harra, L.
    Kraaikamp, E.
    Long, D. M.
    Rodriguez, L.
    Schwanitz, C.
    Smith, P. J.
    Verbeeck, C.
    Zhukov, A. N.
    Liu, W.
    Cheung, M. C. M.
    ASTRONOMY & ASTROPHYSICS, 2022, 667
  • [3] Hyperdiffusion as a mechanism for solar coronal heating
    van Ballegooijen, A. A.
    Cranmer, S. R.
    ASTROPHYSICAL JOURNAL, 2008, 682 (01) : 644 - 653
  • [4] TURBULENCE-DRIVEN CORONAL HEATING AND IMPROVEMENTS TO EMPIRICAL FORECASTING OF THE SOLAR WIND
    Woolsey, Lauren N.
    Cranmer, Steven R.
    ASTROPHYSICAL JOURNAL, 2014, 787 (02)
  • [5] MULTI-SHELL MAGNETIC TWISTERS AS A NEW MECHANISM FOR CORONAL HEATING AND SOLAR WIND ACCELERATION
    Murawski, K.
    Srivastava, A. K.
    Musielak, Z. E.
    Dwivedi, B. N.
    ASTROPHYSICAL JOURNAL, 2015, 808 (01)
  • [6] On the Possibility of Heating the Solar Corona by Heat Fluxes from Coronal Magnetic Structures
    Zaitsev, V. V.
    Stepanov, A., V
    Kronshtadtov, P., V
    SOLAR PHYSICS, 2020, 295 (12)
  • [7] The Role of Magnetic Helicity in Coronal Heating
    Knizhnik, K. J.
    Antiochos, S. K.
    Klimchuk, J. A.
    DeVore, C. R.
    ASTROPHYSICAL JOURNAL, 2019, 883 (01)
  • [8] SYNTHETIC SOLAR CORONAL HEATING ON CURRENT SHEETS
    Wang, Xiao-Gang
    Ren, Li-Wen
    Wang, Jia-Qi
    Xiao, Chi-Jie
    ASTROPHYSICAL JOURNAL, 2009, 694 (02) : 1595 - 1601
  • [9] Solar coronal heating and the magnetic flux content of the network
    Falconer, DA
    Moore, RL
    Porter, JG
    Hathaway, DH
    ASTROPHYSICAL JOURNAL, 2003, 593 (01) : 549 - 563
  • [10] Convection-driven emergence of small-scale magnetic fields and their role in coronal heating and solar wind acceleration
    Isobe, H.
    Proctor, M. R. E.
    Weiss, N. O.
    ASTROPHYSICAL JOURNAL LETTERS, 2008, 679 (01): : L57 - L60