Achieving 1/2 log(1+SNR) on the AWGN channel with lattice encoding and decoding

被引:536
作者
Erez, U [1 ]
Zamir, R [1 ]
机构
[1] Tel Aviv Univ, Dept Elect Syst Engn, IL-89978 Ramat Aviv, Israel
关键词
additive white Gaussian noise (AWGN) channel; dirty paper channel; dither; Euclidean distance; lattice decoding; minimum mean-square error (MMSE) estimation; nested codes; Poltyrev exponent; random lattice ensemble; shaping;
D O I
10.1109/TIT.2004.834787
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address an open question, regarding whether a lattice code with lattice decoding (as opposed to maximum-likelihood (ML) decoding) can achieve the additive white Gaussian noise (AWGN) channel capacity. We first demonstrate how minimum mean-square error (MMSE) scaling along with dithering (lattice randomization) techniques can transform the power-constrained AWGN channel into a modulo-lattice additive noise channel, whose effective noise is reduced by a factor of root1 + SNR/SNR. For the resulting channel, a uniform input maximizes mutual information, which in the limit of large lattice dimension becomes 1/2 log(1 + SNR), i.e., the full capacity of the original power constrained AWGN channel. We then show that capacity may also be achieved using nested lattice codes, the coarse lattice serving for shaping via the modulo-lattice transformation, the fine lattice for channel coding. We show that such pairs exist for any desired nesting ratio, i.e., for any signal-to-noise ratio (SNR). Furthermore, for the modulo-lattice additive noise channel lattice decoding is optimal. Finally, we show that the error exponent of the proposed scheme is lower bounded by the Poltyrev exponent.
引用
收藏
页码:2293 / 2314
页数:22
相关论文
共 33 条
  • [1] Closest point search in lattices
    Agrell, E
    Eriksson, T
    Vardy, A
    Zeger, K
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (08) : 2201 - 2214
  • [2] [Anonymous], 2003, PROC 41 ANN ALLERTON
  • [3] Random codes: Minimum distances and error exponents
    Barg, A
    Forney, GD
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (09) : 2568 - 2573
  • [4] Barron R. J., 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252), DOI 10.1109/ISIT.2001.936163
  • [5] The art of signaling: Fifty years of coding theory
    Calderbank, AR
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (06) : 2561 - 2595
  • [6] VORONOI REGIONS OF LATTICES, 2ND MOMENTS OF POLYTOPES, AND QUANTIZATION
    CONWAY, JH
    SLOANE, NJA
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (02) : 211 - 226
  • [7] CONWAY JH, UNPUB CANAD J MATH
  • [8] Conway JH., 1988, SPHERE PACKINGS LATT, DOI 10.1007/978-1-4757-2016-7
  • [9] WRITING ON DIRTY PAPER
    COSTA, MHM
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (03) : 439 - 441
  • [10] De Buda R., 1975, IEEE Transactions on Information Theory, VIT-21, P441, DOI 10.1109/TIT.1975.1055409