Hilbert series, machine learning, and applications to physics

被引:11
作者
Bao, Jiakang [1 ]
He, Yang-Hui [1 ,2 ,3 ]
Hirst, Edward [1 ]
Hofscheier, Johannes [4 ]
Kasprzyk, Alexander [4 ]
Majumder, Suvajit [1 ]
机构
[1] Univ London, Dept Math, London EC1V 0HB, England
[2] Univ Oxford, Merton Coll, Oxford OX1 4JD, England
[3] NanKai Univ, Sch Phys, Tianjin 300071, Peoples R China
[4] Univ Nottingham, Sch Math Sci, Nottingham NG7 2RD, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.physletb.2022.136966
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe how simple machine learning methods successfully predict geometric properties from Hilbert series (HS). Regressors predict embedding weights in projective space to ~1 mean absolute error, whilst classifiers predict dimension and Gorenstein index to > 90% accuracy with ~0.5% standard error. Binary random forest classifiers managed to distinguish whether the underlying HS describes a complete intersection with high accuracies exceeding 95%. Neural networks (NNs) exhibited success identifying HS from a Gorenstein ring to the same order of accuracy, whilst generation of "fake " HS proved trivial for NNs to distinguish from those associated to the three-dimensional Fano varieties considered. (C) 2022 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 61 条
  • [1] Abadi M., 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
  • [2] ALESSANDRETTI L, 2019, ARXIV191102008MATHNT
  • [3] Altinok S., 2002, Topology and Geometry: Commemorating SISTAG, P25
  • [4] Heterotic compactification, an algorithmic approach
    Anderson, Lara B.
    He, Yang-Hui
    Lukas, Andre
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2007, (07):
  • [5] Hilbert series and plethystics: paving the path towards 2HDM-and MLRSM-EFT
    Anisha
    Das Bakshi, Supratim
    Chakrabortty, Joydeep
    Prakash, Suraj
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (09)
  • [6] [Anonymous], 2018, ARXIV181202893HEPTH
  • [7] [Anonymous], ARXIV170602714HEPTH
  • [8] Machine Learning Calabi-Yau Metrics
    Ashmore, Anthony
    He, Yang-Hui
    Ovrut, Burt A.
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2020, 68 (09):
  • [9] Atiyah M. F., 1969, INTRO COMMUTATIVE AL
  • [10] Quiver mutations, Seiberg duality, and machine learning
    Bao, Jiakang
    Franco, Sebastian
    He, Yang-Hui
    Hirst, Edward
    Musiker, Gregg
    Xiao, Yan
    [J]. PHYSICAL REVIEW D, 2020, 102 (08)