Polar cap sporadic-E: part 1, observations

被引:41
作者
MacDougall, JW [1 ]
Jayachandran, PT
Plane, JMC
机构
[1] Univ Western Ontario, Dept Elect Engn, London, ON N6A 5B9, Canada
[2] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England
关键词
sporadic E; polar cap; gravity waves; metallic ions; IMF;
D O I
10.1016/S1364-6826(00)00093-6
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Sporadic E (Es) is reasonably common in the central polar cap where some of the mechanisms that produce Es at lower latitudes should become inoperative. There is some occasional auroral Es but this is readily identifiable. The other types of Es that are observed have different properties in winter and summer. The characteristic winter type is a "height-spread", short-lived layer that tends to occur in the middle and upper E region. The common summer type is in the form of a "thin", long-lived layer in the lower E region. Both summer and winter types are associated with positive IMF B-y. We explain the initial formation of Es by gravity waves that move ionization out of the lower F region into the E region and concentrate it at reversals of vertical gravity wave motion. These concentrations are seen in winter as transient Es layers. In summer, these transient layers persist and change into long-lived thin Es layers because of metallic ions that are maintained in an ionized state by charge exchange of neutral metal atoms with the ambient E region NO+ and O-2(+) ions produced by photo-ionization. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1155 / 1167
页数:13
相关论文
共 50 条
[21]   Inter-decadal variability of Sporadic-E layer at Argentine Islands, Antarctica? [J].
Flores, P. A. ;
Foppiano, A. J. .
GEOFISICA INTERNACIONAL, 2008, 47 (03) :173-177
[22]   Disturbances in Sporadic-E During the Great Solar Eclipse of August 21, 2017 [J].
Chen, G. ;
Wang, J. ;
Reinisch, B. W. ;
Li, Y. ;
Gong, W. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (05)
[23]   Observations and modeling of scintillation in the vicinity of a polar cap patch [J].
Lamarche, Leslie J. ;
Deshpande, Kshitija B. ;
Zettergren, Matthew D. .
JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2022, 12
[24]   Evaluation of the effect of sporadic-E on high frequency radio wave propagation in the Arctic [J].
Cameron, T. G. ;
Fiori, R. A. D. ;
Themens, D. R. ;
Warrington, E. M. ;
Thayaparan, T. ;
Galeschuk, D. .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2022, 228
[25]   Global ionosonde and GPS radio occultation sporadic-E intensity and height comparison [J].
Gooch, Joshua Y. ;
Colman, Jonah J. ;
Nava, Omar A. ;
Emmons, Daniel J. .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2020, 199
[26]   Modeling of radio wave propagations under sporadic-E influence at low and middle latitudes [J].
Hao Shu-Ji ;
Zhang Wen-Chao ;
Zhang Ya-Bin ;
Yang Ju-Tao ;
Ma Guang-Lin .
ACTA PHYSICA SINICA, 2017, 66 (11)
[27]   Improved models for estimating sporadic-E intensity from GNSS radio occultation measurements [J].
Emmons, Daniel J. ;
Wu, Dong L. ;
Swarnalingam, Nimalan ;
Ali, Ashar F. ;
Ellis, Joseph A. ;
Fitch, Kyle E. ;
Obenberger, Kenneth S. .
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2023, 10
[28]   Global empirical model of sporadic-E occurrence rates (vol 11, 1434367, 2024) [J].
Parsch, Eli V. ;
Franz, Anthony L. ;
Dao, Eugene V. ;
Wu, Dong L. ;
Swarnalingam, Nimalan ;
Salinas, Cornelius C. J. H. ;
Emmons, Daniel J. .
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2025, 12
[29]   Evidence for the Magnetoionic Nature of Oblique VHF Reflections from Midlatitude Sporadic-E Layers [J].
Deacon, Chris ;
Mitchell, Cathryn ;
Watson, Robert ;
Witvliet, Ben A. .
ATMOSPHERE, 2022, 13 (12)
[30]   The changing polar cap - Interball-2 and ground observations [J].
Zhang, Y ;
McEwen, DJ ;
Cogger, L .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2002, 64 (01) :21-30