A structure-based approach for prediction of MHC-binding peptides

被引:56
作者
Altuvia, Y [1 ]
Margalit, H [1 ]
机构
[1] Hebrew Univ Jerusalem, Fac Med, Dept Mol Genet & Biotechnol, IL-91120 Jerusalem, Israel
关键词
D O I
10.1016/j.ymeth.2004.06.008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Identification of immunodominant peptides is the first step in the rational design of peptide vaccines aimed at T-cell immunity. The advances in sequencing techniques and the accumulation of many protein sequences without the purified protein challenge the development of computer algorithms to identify dominant T-cell epitopes based on sequence data alone. Here, we focus on antigenic peptides recognized by cytotoxic T cells. The selection of T-cell epitopes along a protein sequence is influenced by the specificity of each of the processing stages that precede antigen presentation. The most selective of these processing stages is the binding of the peptides to the major histocompatibility complex molecules, and therefore many of the predictive algorithms focus on this stage. Most of these algorithms are based on known binding peptides whose sequences have been used for the characterization of binding motifs or profiles. Here, we describe a structure-based algorithm that does not rely on previous binding data. It is based on observations from crystal structures that many of the bound peptides adopt similar conformations and placements within the MHC groove. The algorithm uses a structural template of the peptide in the MHC groove upon which peptide candidates are threaded and their fit to the MHC groove is evaluated by statistical pairwise potentials. It can rank all possible peptides along a protein sequence or within a suspected group of peptides, directing the experimental efforts towards the most promising peptides. This approach is especially useful when no previous peptide binding data are available. (C) 2004 Published by Elsevier Inc.
引用
收藏
页码:454 / 459
页数:6
相关论文
共 42 条
[1]   Towards a novel classification of human malignancies based on gene expression patterns [J].
Alizadeh, AA ;
Ross, DT ;
Perou, CM ;
van de Rijn, M .
JOURNAL OF PATHOLOGY, 2001, 195 (01) :41-52
[2]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[3]   RANKING POTENTIAL BINDING PEPTIDES TO MHC MOLECULES BY A COMPUTATIONAL THREADING APPROACH [J].
ALTUVIA, Y ;
SCHUELER, O ;
MARGALIT, H .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 249 (02) :244-250
[4]   A structure-based algorithm to predict potential binding peptides to MHC molecules with hydrophobic binding pockets [J].
Altuvia, Y ;
Sette, A ;
Sidney, J ;
Southwood, S ;
Margalit, H .
HUMAN IMMUNOLOGY, 1997, 58 (01) :1-11
[5]   Design of peptide and polypeptide vaccines [J].
BenYedidia, T ;
Arnon, R .
CURRENT OPINION IN BIOTECHNOLOGY, 1997, 8 (04) :442-448
[6]  
Betancourt MR, 1999, PROTEIN SCI, V8, P361
[7]   Human tumor antigens recognized by T lymphocytes [J].
Boon, T ;
vanderBruggen, P .
JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 183 (03) :725-729
[8]   Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network [J].
Brusic, V ;
Rudy, G ;
Honeyman, M ;
Hammer, J ;
Harrison, L .
BIOINFORMATICS, 1998, 14 (02) :121-130
[9]   Epitope selection and development of peptide based vaccines to treat cancer [J].
Celis, E ;
Sette, A ;
Grey, HM .
SEMINARS IN CANCER BIOLOGY, 1995, 6 (06) :329-336
[10]   DETERMINANT SELECTION OF MAJOR HISTOCOMPATIBILITY COMPLEX CLASS I-RESTRICTED ANTIGENIC PEPTIDES IS EXPLAINED BY CLASS I-PEPTIDE AFFINITY AND IS STRONGLY INFLUENCED BY NONDOMINANT ANCHOR RESIDUES [J].
CHEN, WS ;
KHILKO, S ;
FECONDO, J ;
MARGULIES, DH ;
MCCLUSKEY, J .
JOURNAL OF EXPERIMENTAL MEDICINE, 1994, 180 (04) :1471-1483