ψ-Graphene: A New Metallic Allotrope of Planar Carbon with Potential Applications as Anode Materials for Lithium-Ion Batteries

被引:259
作者
Li, Xiaoyin [1 ,2 ,3 ,4 ]
Wang, Qian [1 ,2 ,3 ,4 ]
Jena, Puru [5 ]
机构
[1] Peking Univ, Coll Engn, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China
[2] Minist Educ, Key Lab High Energy Dens Phys Simulat, Beijing 100871, Peoples R China
[3] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
[4] Shanghai Jiao Tong Univ, Collaborat Innovat Ctr IFSA CICIFSA, Shanghai 200240, Peoples R China
[5] Virginia Commonwealth Univ, Dept Phys, Richmond, VA 23284 USA
基金
中国国家自然科学基金;
关键词
ELASTIC BAND METHOD; LI STORAGE; 1ST-PRINCIPLES; ADSORPTION; NANOTUBES; GROWTH; NANORIBBONS; DIFFUSION; SILICENE; POINTS;
D O I
10.1021/acs.jpclett.7b01364
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using state-of-the-art first-principles calculations, we propose a new two-dimensional (2D) carbon allotrope constructed by polymerizing the carbon skeletons of s-indacenes, named PSI (psi)-graphene. We show that psi-graphene has the lowest energy among all hitherto reported 2D allotropes of carbon composed of 5-6-7 carbon rings and is dynamically and thermally stable. This structure is metallic with robust metallicity against external strain. In addition, we find that the adsorption of Li atoms on psi-graphene is exothermic, and the diffusion energy barrier is low and comparable to that of graphene. Furthermore, psi-graphene can achieve a maximum Li storage capacity equivalent to that of LiC6, suggesting its potential as an anode material for Li-ion batteries (LIBs). In addition, we show that increasing the number of hexagons in this structure can enhance the thermodynamic stability of the sheet while maintaining its metallicity. This study provides new insights into the design of new metallic carbon for nanostructured anode materials in the next generation of LIBs.
引用
收藏
页码:3234 / 3241
页数:8
相关论文
共 59 条
[1]   Mechanical properties of graphene and boronitrene [J].
Andrew, R. C. ;
Mapasha, R. E. ;
Ukpong, A. M. ;
Chetty, N. .
PHYSICAL REVIEW B, 2012, 85 (12)
[2]   Engineering atomic and molecular nanostructures at surfaces [J].
Barth, JV ;
Costantini, G ;
Kern, K .
NATURE, 2005, 437 (7059) :671-679
[3]   Graphene-like Boron-Carbon-Nitrogen Monolayers [J].
Beniwal, Sumit ;
Hooper, James ;
Miller, Daniel P. ;
Costa, Paulo S. ;
Chen, Gang ;
Liu, Shih-Yuan ;
Dowben, Peter A. ;
Sykes, E. Charles H. ;
Zurek, Eva ;
Enders, Axel .
ACS NANO, 2017, 11 (03) :2486-2493
[4]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[5]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[6]   First-principles study of metal adatom adsorption on graphene [J].
Chan, Kevin T. ;
Neaton, J. B. ;
Cohen, Marvin L. .
PHYSICAL REVIEW B, 2008, 77 (23)
[7]   Synergism of C5N six-membered ring and vapor-liquid-solid growth of CNx nanotubes with pyridine precursor [J].
Chen, Hong ;
Yang, Yong ;
Hu, Zheng ;
Huo, Kaifu ;
Ma, Yanwen ;
Chen, Yi ;
Wang, Xiaoshu ;
Lu, Yinong .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (33) :16422-16427
[8]   From Nanographene and Graphene Nanoribbons to Graphene Sheets: Chemical Synthesis [J].
Chen, Long ;
Hernandez, Yenny ;
Feng, Xinliang ;
Muellen, Klaus .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (31) :7640-7654
[9]   Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors [J].
Chen, Yen-Chia ;
de Oteyza, Dimas G. ;
Pedramrazi, Zahra ;
Chen, Chen ;
Fischer, Felix R. ;
Crommie, Michael F. .
ACS NANO, 2013, 7 (07) :6123-6128
[10]   In situ band gap engineering of carbon nanotubes [J].
Crespi, VH ;
Cohen, ML ;
Rubio, A .
PHYSICAL REVIEW LETTERS, 1997, 79 (11) :2093-2096